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We study the effect of frustration, induced by a magnetic field, on the superconducting diamag-

netic properties of two-dimensional quasicrystalline arrays.

In particular, we calculate the

superconducting-normal phase boundary, 7.(H), for several geometries with quasicrystalline or-
der. The agreement between our theoretically obtained phase boundaries and the experimentally
obtained ones is very good. We also propose a new way of analyzing the overall and the fine
structure of 7.(H) in terms of short- and long-range correlations among tiles.

A large number of experiments have studied flux quant-
ization in two-dimensional (2D) periodic superconducting
arrays.! However, several groups?~* have recently per-
formed experiments with superconducting ordered non-
periodic structures with either fractal or quasicrystalline
(QC)3 geometry. The groups>* who have studied the
effect of an externally applied magnetic field on quasicrys-
talline arrays have constructed two types of superconduct-
ing networks: aluminum wire micronetworks® and an ar-
ray of Josephson junctions.* Nevertheless, in contrast to
all this considerable experimental effort,®* very little
theoretical work has been done on these systems.

It is the purpose of this paper to study the frustration
induced in 2D quasicrystalline networks by an applied
magnetic field, and its effect on their superconducting di-
amagnetic properties. In particular, we calculate the
superconducting-normal phase boundary 7.(H) for all
the 2D geometries which have been studied experimental-
ly.3* The agreement between our curves and the experi-
mental data®* obtained so far is very good. Furthermore,
we propose a new analytical and systematic way of
analyzing the structure of the phase boundaries in terms
of correlations among tiles. Conclusions obtained using
this novel approach are consistent with recent measure-
ments by Springer and Van Harlingen* on Josephson-
junction arrays.

In these systems, a continuous variation of the applied
magnetic field allows the unique possibility for a fine tun-
ing of the geometry-induced frustration. The ratio of the
elementary plaquette areas is equal to an irrational num-
ber for all four lattices considered here. This geometric
constraint implies that the magnetic flux cannot satisfy
quantization in all the plaquettes simultaneously. We
have considered the linearized Ginzburg-Landau equa-
tions® (for the superconducting networks) and the linear-
ized mean-field approximation to the frustrated XY Ham-
iltonian’ (for the Josephson junction array). Both of
them can be formally written®’ as a tight-binding
Schrédinger equation ZpJ,,ﬂe'A"”wﬁ =cy, where A,5=2n/
®ofEA-dl, and ®y=ch/2e. The highest eigenvalue is
proportional to T.(H ).

The geometries considered here are (1) periodic (with
500 spacings or more) along one direction and quasicrys-
talline (with 60 spacings or less) in the other direction
(strip geometry), (2) Penrose lattice [see Fig. 1(a)l, and
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(3) eightfold Penrose lattice [see Fig. 1(b)]. We have
considered (1) both in the Fibonacci case, which is associ-
ated with the “golden mean,” and the “silver mean” case.
The Fibonacci lattice is the 1D analog of the Penrose lat-
tice.®> For these two networks, the ratio of basic frequen-
cies in the diffraction pattern is equal to the golden mean,
t=(/5+1)/2=2cos(n/5), and the two types of elemen-
tary plaquettes have a ratio of areas (large to small) and a
population ratio (number of large to number of small
tiles) both equal to . We have also studied the 1D analog
of the 2D eightfold symmetric quasicrystalline lattice.’
The silver mean, £ =+/2+1=cot(x/8), characterizes the
quasiperiodicity of these two networks. The ratio of areas
and the population ratio, for these two lattices, are equal
to v2 and 1/v/2, respectively. De Bruijn’ first gave a glo-
bal prescription to generate 2D Penrose patterns. We
constructed our fivefold (eightfold) Penrose lattices by
projecting a five- (eight-) dimensional hypercubic grid
into a 2D subspace. The centers of the hypercubes which
intersect a particular hypersurface are projected into it.

In order to obtain 7.(H) for the 2D Fibonacci lattice, it
is convenient to use the Landau gauge A =Bxy, in which

(a) (b)

FIG. 1. (a) Portion of a Penrose pattern; (b) portion of an
eightfold Penrose pattern.
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an eigenfunction of our tight-binding equation takes the

product form 7, =w,e’*™, where y, satisfies the 1D
equation
2kgT
; Vn=Wn+1+Hyn—1+2cosQafx,— Ky, ,

with f=®,/®q (or f7) being the reduced magnetic flux,
i.e., the magnetic flux through a small (large) cell divided
by the flux quantum. For a fixed value of k, we numeri-
cally solve the above equation for the largest eigenvalue,
which is then maximized by varying k in the range (0,7)
to find the transition temperature.

The transition from a periodic phase boundary T.(H)
to the richly structured one associated with an underlying
QC geometry can be followed in Fig. 2. The associated
lattices have a strip-type geometry. The ratio of the ele-
mentary plaquette areas is equal to the golden mean. The
minima and maxima of the T.(H) curve, for the periodic
ladder geometry with only one type of cell [Fig. 2(a)] are
quadratic. However, the local maxima and minima for
the quasicrystalline strip systems [Figs. 2(b)-2(e)] tend,
in general, to be more peaked (cusplike). This suggests
that one-cell effects are responsible for the quadratic (par-
abolic) extrema, meanwhile the cusplike behavior is due
to the collective effect of many cells. Figure 2(b) shows
the 7.(H) curve for a strip with two types of elementary
plaquettes. From it, we note that only the main features
of the 2D Fibonacci and Penrose lattices phase boundaries
are essentially determined by the irrationality of the ratio
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FIG. 2. Phase boundary for lattices with strip-type geometry.
The number of quasicrystalline spaced vertical lines is equal to
successive Fibonacci numbers: (a) 2 vertical lines (ladder net-
work), (b) 3, (c) 5, (d) 8, and (e) 13.

of the elementary plaquette areas. If we increase the
number of tiles, we obtain more and more fine structure.
Below, we will come back to this point through analytical
means.

As noted above, the use of a periodic direction greatly
simplifies the calculations. However, neither the Penrose
nor the eightfold Penrose lattices have periodic directions.
Obtaining T.(H) for these lattices is far more difficult
since these two systems cannot be simplified by using
translational invariance and, therefore, the problem needs
to be tackled directly. We have numerically solved the
linearized Ginzburg-Landau equations for a Penrose lat-
tice with 301 nodes (dotted line in Fig. 3) and for an
eightfold Penrose lattice with 329 nodes (dotted line in
Fig. 4). This is equivalent to solving the linearized mean-
field equations for the XY Hamiltonian, or solving the
electronic tight-binding problem, and then plotting the
edge state versus magnetic field. Our choice of gauge was

Aqp =%’;B(yp —ya) (xa+x5)/2 ,

where x, and y, are the coordinates of the ath node. The
continuous line in Fig. 3 is experimental data obtained by
Springer and Van Harlingen* for an array of 14000
weakly coupled superconducting islands fabricated using
direct-write electron-beam lithography. They measured
the voltage across the sample [which follows the behavior
of —T.(H)] versus applied transverse magnetic field. In
Fig. 4 we have plotted our theoretical curve and their
data, obtained for a voltage bias of around 40 nV. The
agreement between them is very good. For the 2D Fi-
bonacci geometry, and also for the Penrose array case, an
average flux of one flux quantum per elementary tile
corresponds® to an applied magnetic field of Hy
=®y(1+1772) " !/a, where a, =area of a small tile. An
arrow in Fig. 3 indicates the small dip associated with this
field (H/Ho=1). Also, the average applied field in order
to have N;(N;) flux quanta in every large (small) tile is
H=®(N;+1N;)(1+1?) ~!/a;. Therefore, the arrange-
ments of the flux quanta’® on the array are
(N,,N;)=(1,1), (1,2), (2,3), and (3,5) for the indicated
values of the magnetic field, i.e., H/Hy=1, t, 72, and 73,
respectively.

The continuous line in Fig. 4 is experimental data ob-
tained by Behrooz et al.> The arrow indicates the mag-
netic field corresponding to one-flux quantum in each

elementary tile Ho=®(1++2)/(2a,). The fields
H=®y(N,+~2N;)/2a;, have been indicated bzy

(N, Ng) =(1,1), (3,2), and (7,5) for H/Hy=1, ¢, and &*,
respectively. The fields corresponding to n+m¢ for
In],|m| <4 (see Fig. 4) account for most of the theoret-
ical and experimental fine structure.

So far, all our theoretical data were obtained numeri-
cally. However, we have also employed a novel way to ob-
tain and explain the basic features of T.(H). This ap-
proach, based on the Lanczos method,? is designed to ap-
proximate the largest eigenvalue [to be denoted as
Eo(H)] for our eigenvalue equations. As we will see, this
method is not only simple but also makes explicit the
physical origin of the peaks and valleys of various sizes in
T.(H). First, we choose a state y; which is uniform on
the lattice. Afterwards, a second state y, is obtained as
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FIG. 3. Superconducting-normal phase boundary for the Penrose pattern. The solid line is experimental data for a Josephson-
junction array (Ref. 4), and the points are our theoretically obtained values for a lattice with 301 nodes. The vertical axis represents
voltage (10 nV) for the experimental data, and 7.(0) — T.(H) (arbitrary units) for the theory.

FIG. 4. Phase boundary, 7.(0) — T.(H), for the eightfold Penrose pattern. The solid line is experimental data (K) for an alumi-
num wire micronetwork (Ref. 3), and the points are our theoretically obtained values (arbitrary units) for a lattice with 329 nodes.
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01(Hy)), where Q) projects off the space spanned by y;.
If we replace the full Hamiltonian H by its restriction H;
on the linear manifold spanned by {w1, w3}, then the larger
eigenvalue of H, [which approximates Eo(H)] gives a
fairly good result in locating the relative heights of the
main peaks and dips of the T.(H) curve. If we go one
step further, i.e., to define y3=0Q,0;(Hys>) and replace H
by its restriction H; on the linear manifold spanned by
{w1, w2, w3}, then the largest eigenvalue of H; gives a much
better approximation to Eo(H) and most of the fine struc-
ture is reproduced, in addition to the main peaks and dips.

|

C =2cos(2xfL,)),
F={C’-

In general, higher-order truncations of the Hamiltonian
produce better results, revealing finer structures. In order
to make the following discussion more specific, we will
now consider a strip-type geometry as an example. A uni-
form state y; generates the following equations:

Hyy =2y +2y2, Hy:=yi+Cyrtys

Hy;=Dy,+Fys+vya,. .. ;

where

D=3—C*+2cos2nf(L,+L,+)]) ,
C+2cosldnf(L,+L,+1)1) —4C{cos2nf(Ly+Ly+)1)+2{cos2nf (Ly+ Lp+1+Lo+2)}/D .

We have used the Landau gauge as before, and the angular brackets denote averages along the horizontal direction (L,
are the lattice spacings). For instance, for the particular case of the Fibonacci network:

(cos[2f(L,+L,+1)D) =%cos[27rf(L +S)1+ 713—005(47rfL)
T

and

(cos2rf(Ly+ Ly 1+ Lot =

1 1
_+__
T 3

The largest eigenvalues, which approximate T.(H), for
the second-, third-, and fourth-order truncation of the
Hamiltonian have been plotted in Fig. 5. The second-
order truncation is already very good at reproducing the
overall structure. As we proceed to higher orders, finer
structure begins to emerge and develop. In order to see
why this is the case, note that in the second-order trunca-
tion only the single-cell statistics (through C) comes in,
while in the third-order truncation, correlations between
nearest and next-nearest neighboring cells are involved
(through D and F), and the fourth-order truncation de-
pends on even Jonger-range correlations. We have there-
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FIG. 5. Largest eigenvalues, obtained by using the Lanczos
method, of the operators H, (bottom), H3, and H, (top) vs H
for the 2D Fibonacci lattice. The vertical axis represents
T.(0) — T.(H) in arbitrary units. The curves have been shifted
vertically in order to visualize them better.

cosl2nf(2L+S)] +L4cos[47rf(L +25)1 .
T

fore proved, that the overall structure in 7. (H) is a result
of single-cell statistics. The above relations also prove, by
considering successive higher-order truncations, that
longer-range correlations among cells are responsible for
the finer structure. This result is consistent with experi-
mental® results obtained from the evolution of fine struc-
ture in Penrose lattices as a function of voltage bias. A
complete and detailed exposition of this approach will be
presented in full length elsewhere® including also the com-
puted T (H ) curves for all the geometries studied experi-
mentally.?

The principal results we have obtained are (1) numeri-
cal calculations, which did not require a single adjustable
parameter, of the superconducting-normal phase bound-
ary for the quasicrystalline systems fabricated by several
experimental groups, (2) a very good agreement between
our theoretical results and the experimental ones, and (3)
a proposed new analytic and systematic way of analyzing
T.(H) which for the first time explicitly shows, in a de-
tailed and specific manner, the way short-range correla-
tions among tiles affect the main peaks, and the way
longer-range correlations generate finer structure. Final-
ly, some concluding comments are necessary. In our
analysis, we have neglected superconducting fluctuations.
Nevertheless, we do not expect them to be very important
here bccause it is known that periodic superconducting ar-
rays' in a transverse magnetic field dlsplay mean-field-like
behavior. On the other hand, the size of the lattices we
have studied is either one or two orders of magnitude
smaller than the ones studied experimentally. We believe
that this factor, together with the imperfections of the fa-
bricated structures (e.g., the nonuniform width of the
wires), accounts for most of the discrepancies between
theory and experiment. Also, the finite width of the
strands and the finite measurement current through the
sample may smooth out some of the unobserved fine struc-
ture.



8342 NORI, NIU, FRADKIN, AND CHANG 36

We are very grateful to D. Van Harlingen, K. Springer, and P. M. Chaikin for useful discussions and for sharing with
us their published and unpublished data. F.N. acknowledges the National Center for Superconducting Applications for
partial support and M. Burns, A. Lopez, and D. Stroud for conversations. Q.N. thanks M. Stone for useful discussions.
This research has used the computing facilities at the Materials Research Laboratory, University of Illinois, and was sup-
ported by the National Science Foundation through Grants No. MRL-83-16981, No. DMR-84-15063, and No.

PHY87-01775.

*Also at the Materials Research Laboratory and National
Center for Supercomputing Applications, University of Illi-
nois, Urbana, IL 61801.

Present address: Institute for Theoretical Physics, University
of California, Santa Barbara, CA 93106.

IB. Pannetier et al., Phys. Rev. Lett. 53, 1845 (1984); R. Webb
et al., ibid. 51, 690 (1983); D. Resnick et al., ibid. 47, 1542
(1981); Ch. Leeman et al., ibid. 56, 1291 (1986); J. Koster-
litz and E. Granato, Phys. Rev. B 34, 1026 (1986); 33, 6533
(1986).

2J. M. Gordon, A. M. Goldman, J. Maps, D. Costello, R. Ti-
berio, and B. Whitehead, Phys. Rev. Lett. 56, 2280 (1986).

3A. Behrooz, M. Burns, H. Deckman, D. Levine, B. Whitehead,
and P. M. Chaikin, Phys. Rev. Lett. 57, 368 (1986); Phys.
Rev. B 35, 8396 (1987); B. Pannetier et al. (unpublished).

4K. Springer and D. Van Harlingen, Phys. Rev. B 36, 7273
(1987).

5N. de Bruijn, Ned. Akad. Wetensch. Proc. Ser. A 43, 27
(1981); 43, 53 (1981); D. Levine and P. J. Steinhardt, Phys.
Rev. B 34, 596, 617 (1986); for further studies of the one-
dimensional analog case see, for instance, F. Nori and J. P.
Rodriguez, Phys. Rev. B 34, 2207 (1986); Q. Niu and
F. Nori, Phys. Rev. Lett. 57, 2057 (1986).

6S. Alexander, Phys. Rev. B 27, 1541 (1983); R. Rammal et al.,
ibid. 27, 2820 (1983); J. Simonin et al., Phys. Rev. Lett. 56,
2649 (1986).

7W. Y. Shih and D. Stroud, Phys. Rev. B 28, 6575 (1983); 32,
158 (1985); 30, 6774 (1984); J. Chung, M. Y. Choi, and
D. Stroud (unpublished).

8C. Paige, J. Inst. Math. Its Appl. 10, 373 (1978).

9F. Nori and Q. Niu (unpublished).



