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Abstract: Mie theory is one of the main tools describing scattering of 
propagating electromagnetic waves by spherical particles. Evanescent 
optical fields are also scattered by particles and exert radiation forces which 
can be used for optical near-field manipulations. We show that the Mie 
theory can be naturally adopted for the scattering of evanescent waves via 
rotation of its standard solutions by a complex angle. This offers a simple 
and powerful tool for calculations of the scattered fields and radiation 
forces. Comparison with other, more cumbersome, approaches shows 
perfect agreement, thereby validating our theory. As examples of its 
application, we calculate angular distributions of the scattered far-field 
irradiance and radiation forces acting on dielectric and conducting particles 
immersed in an evanescent field. 
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1. Introduction 

The scattering of light by various particles appears in a variety of optical processes, with 
applications ranging from microscopy to astrophysics. A fundamental solution describing 
electromagnetic wave scattering by a spherical particle was found in 1908 by Gustav Mie [1]. 
Since then, the Mie theory has become the main tool for characterization of particle-induced 
light scattering [2–4]. In addition to the properties of scattered light, this theory allows 
calculation of radiation forces exerted on particles. Such forces are of great importance for 
optical manipulations [5] and for investigations of the fundamental physical properties of 
electromagnetic fields [6]. 

With the development of near-field optics and plasmonics [7–9], evanescent 
electromagnetic waves have attracted enormous interest, both for theory and applications. In 
particular, the evanescent-wave scattering by small particles and accompanying radiation 
forces are important in modern optics. Analogues of the Mie theory for evanescent waves 
were elaborated [10–13], while the radiation forces from evanescent fields were extensively 
examined theoretically [13–23] and experimentally [24–31]. Most of these Mie-type 
approaches are based on a straightforward expansion of the incident evanescent wave in a 
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series of vector spherical harmonics and the subsequent reproduction of the Mie procedure, 
which results in rather cumbersome calculations [10–17]. Alternatively, one can treat 
analytically the simplest approximation of the dipole Rayleigh scattering of evanescent waves 
by small (much less than the wavelength) particles [19–23]. 

In this paper we put forward a much simpler method for the calculation of the Mie 
scattering and optical forces with an evanescent incident field. Our approach uses the fact that 
an evanescent wave can be represented as a regular z-propagating plane wave which is 
geometrically rotated by a complex angle. Therefore, using the rotational symmetry of the 
Mie problem, we find that the scattered field can also be obtained by applying the same 
complex-angle rotation to the well-known Mie-theory solutions. In other words, one does not 
need to solve a new problem but only apply a simple geometric transformation to the known 
solutions. Naturally, our results coincide with those obtained by previous exact methods [10–
15] or in the dipole-scattering approximation for small particles [19–23]. However, our 
approach offers significant advantages, including a much more transparent and time-saving 
procedure, use of the well-elaborated Mie-theory calculation schemes, existing software 
codes, etc. 

To demonstrate several applications of our method, we first calculate the far-field 
scattering diagrams for different evanescent-wave polarizations and particle sizes, and then 
compare them with the usual Mie-theory diagrams for the incident plane wave case. Second, 
we compute optical forces exerted on dielectric particles in an evanescent field from a totally-
reflecting interface, and show that our results coincide with those previously reported in 
[13,22,23]. Finally, we calculate the optical force on metallic particles and address the 
problem of the positive vertical force repelling the particle from the surface 
[14,15,19,20,23,24,31]. Note that, as in most other works, we neglect multiple reflections 
from the surface limiting the evanescent field. More accurate treatments [16,17,19–21,23,32] 
show that the influence of these reflections can be neglected in a wide range of parameters: 
e.g., in calculations of the parallel components of the force, and for particle sizes of the order 
of the wavelength and not exhibiting resonances. Even in cases where multiple-scattering 
effects must be taken into account, the single scattering of a pure evanescent wave is the first 
step, and it can be facilitated by the approach proposed here. 

2. Incident field configuration 

The standard formulation of the Mie scattering theory starts with an incident monochromatic 
plane wave propagating along the z  axis, with wavevector ( )0,0,k=k , whereas the center 

of the particle is located at the origin ( ), ,x y z = 0 . Complex electric and magnetic field 

amplitudes of the incident wave are written as 

 ( ) ( ) ( )exp , exp exp .

0 0 0

E H E

E ikz H ikz E ikz
ε
μ

⊥

⊥ ⊥

−     
     = = =     
     
     

E H
 

      (1) 

Here the subscripts   and ⊥  denote the p - and s - polarizations with respect to the ( ),x z  

plane, 0/k n c nkω= ≡  is the wave number [ω  is the frequency, c  is the velocity of light in 

vacuum, and throughout the paper we omit the common factor ( )exp i tω− ], and we assume a 

lossless medium characterized by permittivity ε , permeability μ , and refractive index 

n εμ= . Note that in this paper we use the Gaussian system of units. For transition to the SI 

units, one should modify the field amplitudes as 0ε→E E , 0μ→H H  ( 0ε  and 0μ  are 
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the vacuum permittivity and permeability, 2
0 0 cε μ −= ), and use the corresponding constant 

1 / 2g =  [see Eq. (8) below]. 

Let us consider a more generic situation, where an incident wave propagates at some 
angle γ  with respect to the z  axis in the ( ),x z  plane. The wave field is obtained using the 

corresponding rotation operator ( ) ( )ˆ ˆexp /y yi Jγ γ− = − R , where Ĵ  is the total (spin plus 

orbital) angular momentum operator. Application of the operator ( )ˆ
y γ−R  (which rotates 

both vector directions and function distributions) to the wave fields ( )E r  and ( )H r  results 

in the transformation: 

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, ,y y y yR R R Rγ γ γ γ   → − → −   E r E r H r H r     (2) 

where 

 ( )
cos 0 sin

ˆ 0 1 0

sin 0 cos
yR

γ γ
γ

γ γ

 
 − =  
 − 

 (3) 

is the rotation matrix which acts on the Cartesian components of the vectors. Explicitly, Eqs. 
(2) and (3) yield 

 

( )

( )

cos

exp cos sin ,

sin

cos

exp cos sin .

sin

E

E ik z x

E

E

ik z xE

E

γ
γ γ

γ

γ
ε γ γ
μ

γ

⊥

⊥

⊥

 
 = +   
 − 

− 
 = +   
 
 

E

H







 (4) 

Here the transformation of coordinates ( )ˆ
yR γ→r r  is equivalent to the wavevector rotation 

( )ˆ
yR γ→ −k k . 

Importantly, the simple expressions Eqs. (2)–(4), which describe an obliquely-propagating 
plane wave, can also describe evanescent plane waves decaying away from the 0z =  plane 
(Fig. 1). Indeed, consider now the complex propagation angle γ  given by: 

 , 0.
2

i
πγ α α= − >   (5) 

In this case, the rotation matrix (3) ( )ˆ
yR γ−  takes the form 

 

sin h 0 cos h
ˆ 0 1 0 ,

2
cos h 0 sin h

y

i

R i

i

α α
π α

α α

 
   − + =      − 

 (6) 

and the incident field is obtained by the corresponding modifications of Eqs. (4): 
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( )

( )

sin h

exp cos h sin h ,

cos h

sin h

exp cos h sin h ,

cos h

iE

E ikx kz

E

iE

ikx kzE

E

α
α α

α

α
ε α α
μ

α

⊥

⊥

⊥

 
 = − 
 − 

− 
 = − 
 
 

E

H







 (7) 

with wavevector ( )cos h ,0, sin hk ikα α=k . Equation (7) describe an evanescent plane wave 

propagating in the x -direction and decaying in the positive z -direction, see Fig. 1. 

 

Fig. 1. Schematic of the Mie scattering problem. Incident wave (blue), scattered field (green), 
and radiation force exerted on the particle (yellow) are shown. (a) standard Mie theory with the 
incident plane wave propagating along the z -axis. (b) Rotation of the field, Eqs. (2) and (5), 

by the complex angle 
2

i= −
π

γ α  results in the modified Mie problem with evanescent 

incident wave Eq. (6). The parameter h  indicates the distance to the surface where the 
evanescent wave is generated. 

It is useful to consider the time-averaged densities of the electromagnetic energy and 
momentum in the evanescent field (7). They are determined by the well-known relations [2] 

 ( ) ( )2 2 *, Re ,
2

g g
w

c
ε μ= + = ×E H p E H    (8) 

where ( ) 1
8g π −=  in the Gaussian system of units ( 1 2g =  in SI units). Substituting the 

evanescent fields Eq. (7) into Eq. (8), we obtain 

#180652 - $15.00 USD Received 27 Nov 2012; revised 6 Feb 2013; accepted 6 Feb 2013; published 13 Mar 2013
(C) 2013 OSA 25 March 2013 / Vol. 21,  No. 6 / OPTICS EXPRESS  7086



 

( ) ( )

( ) ( )

( ) ( )

2 22

2 2

*

cos h exp 2 sin h ,

cos h exp 2 sin h , 0,

2 sin h cos h Im exp 2 sin h .

x Z

y

w g E E kz

gn
p E E kz p

c

gn
p E E kz

c

ε α α

α α
μ

α α α
μ

⊥

⊥

⊥

= + −

= + − =

= − −







      

   

  

 (9) 

As expected for an evanescent field, the z-directed momentum component vanishes and the 
energy flows parallel to the 0z =  plane. It is worth noticing that the x  component of the 

momentum transports the energy and can be written as 2/x gp v w c= . Here 0 /g xv ck k=  

( cos hxk k kα= > ) is the wave group velocity, and xp  is essentially combined from orbital 

and spin contributions as described in [33,34]. At the same time, the transverse momentum 

yp  was described by Fedorov and Imbert in the total internal reflection problem [35,36]. This 

transverse momentum yp  is proportional to the ellipticity of the wave polarization 

( )*2 Im E E⊥ , it is of purely spin nature, and therefore does not transport energy [33,34]. 

In practice, one of the standard ways to generate the incident evanescent wave (7) is to use 
the total internal reflection. For instance, let the plane z h= −  be the dielectric interface 

separating two media, with parameters 1ε , 1μ , 1 1 1n ε μ=  ( z h< − ) and ε , μ , 

1n nεμ= <  ( z h> − ). A propagating plane wave 0E  with the p - and s -polarized field 

components 0E   and 0E ⊥  impinges on the interface from the z h< −  half-space at an angle 

of incidence 1θ , such that the condition for total internal reflection 1 1sinn nθ >  is realized. 

Then, the transmitted field at z h> −  calculated via the corresponding Snell-Fresnel formulae 
[2] will be the evanescent wave Eq. (7) with parameters 

 
2

21 1
1 1cos h sin , sin h sin 1,

n n

n n
α θ α θ = = − 

 
      (10) 

 
1 1

sin h sin h1 1
0 0

1 1
1 1 1 1

2 cos 2 cos

,     .
cos sin h cos sin h

kh kh

n

n
E e E E e E

n n
i i

n n

α α

μθ θ
μ

ε μθ α θ α
ε μ

− −
⊥ ⊥= =

+ +
  (11) 

One can notice that the complex angle of rotation γ , determined by Eqs. (5) and (10), is just 

the complex angle of refraction which formally follows from Snell’s law under the total-
reflection conditions [2]. Note also that the evanescent wave generated at the distance h  from 

the 0z =  plane acquires the amplitude attenuation factor ( )exp sinhkh α− . 

3. Complex-angle Mie theory: Scattered field and radiation forces 

Considering light scattering by a spherical particle of radius a  with electromagnetic 

parameters pε , pμ , and p p pn ε μ= , the standard Mie equations establish linear relation 

between the amplitudes of the incident plane wave Eq. (1), E , H  and scattered fields sE , 
sH . These known equations [4] are collected in Appendix A in a complete form, keeping the 

scattered near field and radial components (which are typically omitted). One can write these 
equations in a symbolic operator form as 
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 ( ) ( ) ( ) ( )ˆ ˆ, ,s s
E HS S= =E r r E H r r E      (12) 

where the Mie scattering operators ( ),
ˆ

E HS r  are well defined in the complex domain. 

We have shown that the rotation Eq. (6) by a complex angle transforms the incident z -
propagating plane wave Eq. (1) to the evanescent wave Eq. (7). Can we then apply a similar 
transformation to the whole Mie scattering problem Eq. (12)? This problem is linear. The 
free-space Maxwell equations for the complex field amplitudes and the boundary conditions 
(for the case of a spherical surface centered at the origin) are both invariant with respect to 
rotations. Hence, the solution of the Mie problem with the incident evanescent wave Eq. (7) 
can be obtained by applying the complex-angle rotation Eq. (6) to the standard Mie solution 
Eq. (12) with the incident plane wave: 

 

( )

( )

ˆ ˆ ,
2 2

ˆ ˆ .
2 2

s s
y y

s s
y y

R i R i

R i R i

π πα α

π πα α

    → − + −        
    → − + −        

E r E r

H r H r

 (13) 

The total field is given by the vector summation of the incident and scattered fields: 

 , .tot s tot s= + = +E E E H H H      (14) 

The fairly simple Eqs. (6), (7), (12)–(14) (supplemented with the standard Mie formulas in 
Appendix A) represent the central results of this paper, namely, the complex-angle Mie theory 
for evanescent incident waves. This theory is mathematically equivalent to the previous exact 
methods [10–15] based on the explicit expansion of the incident evanescent field in spherical 
functions and the boundary-problem solution (we show this in Section 4). However, our 
method is free from tedious analytic transformations and the whole calculation requires only 
the standard Mie formulas derived for the z-directed incident plane wave. Hence, it offers 
considerable advantages, such as well-developed theoretical approaches, elaborated 
calculation schemes, and available computer software codes. 
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Fig. 2. Angular diagrams for the scattering far-field irradiance 

( ) ( ) ( )[ ]*
, Re , ,

s s s

r
I = ×E Hθ φ θ φ θ φ  at ( )max ,r a λ  for the s-polarized incident field, 

dielectric particle with / 1.75
p

m n n= = , and for different particle sizes. (a) Standard Mie 

scattering with incident plane wave (1) and (b) complex-angle Mie scattering for the incident 
evanescent wave Eq. (7) with sinh 0.92=α . Red, green, and blue curves in the polar plots 

represent cross-sections of the 3D scattering diagrams by azimuthal planes with 0=φ  

( ),x z , / 4=φ π , and / 2=φ π  ( ),x y , respectively. Diagrams in the (a) and (b) panels are 

related to each other via the complex-angle rotation (13). 

To demonstrate the ability of our method to characterize the Mie scattering of evanescent 
waves using the same code as for the standard Mie theory, in Figs. 2 and 3 we plot angular 
diagrams of the irradiance of the scattering far-fields Eqs. (12) and (13) for different 
polarizations and particle sizes. One can see there that for small particles, 1ka   (the dipole 
Rayleigh scattering case), the scattering indicatrix is entirely similar for the s-polarized 
propagating and evanescent incident waves (Fig. 2), whereas for larger particles, 1ka ≥ , the 
evanescent-wave scattering acquires a natural x x↔ −  asymmetry. For the p-polarized 
incident fields (Fig. 3), the scattering patterns for the propagating and evanescent incident 
waves differ from each other even for small dipole particles. This is because a p-polarized 
evanescent field inevitably possesses a non-zero z-component, see Eq. (7). It should be 
noticed that the far-field scattering diagrams have somewhat restricted meaning for the 
incident evanescent field because of the inevitable presence of an interface bounding the 
evanescent wave. Nonetheless, they can indicate characteristic features of the scattered field, 
particularly in the directions parallel to the interface. 
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Fig. 3. Same as in Fig. 2, but for the p-polarized incident waves. 

One of the important applications of the Mie theory is the calculation of the optical force 
exerted on a particle by the total electromagnetic field Eq. (14). This force is determined by 

the Maxwell stress tensor { }ˆ
ijT T= , , , ,i j x y z= : 

 ( )2 2* * 1
Re .

2
tot tot tot tot tot tot

ij i j i j ijT g E E H Hε μ δ ε μ = + − +  
E H  (15) 

Integrating the stress tensor components over any surface A enclosing the particle (e.g., a 
sphere { }S r R= = , R a> ), we obtain the optical force: 

 2ˆ ˆ ,
A S
T dA R T d= = Ω F n n  (16) 

where sind d dθ θ φΩ =  is the elementary solid angle, ( )sin cos ,sin sin ,cos
Tθ φ θ φ θ=n  is 

the unit vector of the outer normal to the sphere surface. Below we calculate the optical force 
from the evanescent incident field using the complex-angle Mie theory, and compare these 
results with the results of previous, more cumbersome, approaches. 

4. Radiation forces: Comparison with other approaches and new applications 

To verify the validity of our method, we apply the complex-angle Mie theory to problems 
involving optical forces from evanescent fields. We assume that a spherical particle of radius 
a  lies on the totally-reflecting surface z a= −  [13,18], so that its center is positioned at 

0z = , and the incident evanescent wave is described by Eqs. (7), (10), and (11) with h a= . 
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Fig. 4. Dimensionless radiation force components , 0/x zF P  versus the particle-size parameter 

ka  for a dielectric particle lying on a total-reflecting surface. The parameters of the particle 
and incident field are given by Eqs. (7), (10), (11), and (17). The cases of the s-polarization 
(solid lines) and p-polarization (dashed lines) are shown. The results of our calculations based 
on the complex-angle Mie theory Eqs. (12)–(16) (red curves) are superimposed over the data 
taken from Figs. 8 and 9 of Ref [13]. (black curves). 

First, following the well-established approach of Refs [13,14], we consider a dielectric 
particle and either p-polarized ( 0 0E ⊥ = ) or s-polarized ( 0 0E = ) incident wave. The input 

parameters possess the following numerical values [13]: 

 1 1 11, 1.75, 1, 1.5, 51 .p pn n nμ μ μ θ= = = = = = = °             (17) 

(Recall that parameters with the subscript “1”, without subscript, and with subscript “p” 
correspond to the high-index medium, low-index medium, and particle, respectively.). Using 
Eq. (10), this yields sinh 0.92α  . The calculated force Eq. (16) will be normalized by 

 ( )2
22

0 0 0 .
4

a
P E E

π ⊥= +   (18) 

This quantity is proportional to the time-average momentum flux of the incident plane wave 

0E  through the area 2a  and represents the Gaussian-unit counterpart to the SI-unit 

normalization divider 2 2
0 0a Eε  used in [13,14,18]. Figure 4 shows the optical force 

components xF  and zF  versus the particle size parameter ka , calculated using the complex-

angle Mie theory Eqs. (6), (7), (10)–(16), i.e., via numerical evaluation of the scattered field 
Eqs. (12), (13) and the force integral Eq. (16). These data are superimposed over the data 
obtained in [13] using a considerably more complex theory. Evidently, there is an excellent 
agreement between the two approaches. (Small deviations can be attributed to the accuracy of 
numerical calculations and to graphic distortions in the printed copy of [13].) 

Second, we compare the results of our calculations of radiation forces for small particles 
( 0.1ka <

 ) with what follows from the known Rayleigh-scattering formulae for evanescent 
fields. From the equations derived in [21–23], it follows that for non-magnetic media and 
particles ( 1 1pμ μ μ= = = ) the optical force components are given by 

 

( )

( )

22 2 3

2

3 2 sin h

1
2cos h 1 cos h

2

2
Im ,

2 3 2

x

p p kh

p p

F E E ka

ka e α

α α

ε ε ε ε
ε ε ε ε

⊥

−

 = + −
 

  − −
 × +  + +   



 (19) 
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 ( )22 2 3 2 sin h1
2cos h 1 sin h Re .

2 2
p kh

z
p

F E E ka e αε ε
α α

ε ε
−

⊥

 − = − + −     + 
  (20) 

The same expressions can be derived in the first electric-dipole-scattering approximation [i.e., 
keeping only the terms with the coefficient 1a  of Eq. (A4)] of our complex-angle Mie theory 

Eqs. (12)–(16). Taking the numerical values of the parameters from [23]: 

 1 11.5, 1, 42 , 632.8 nm, 10 nm ( 0.1),n n a kaθ λ= = = ° = =                     (21) 

(which yields sinh 0.086α  ), we calculate the optical force components for various complex 
values of the particle permittivity pε . In Table 1 we show the comparison of the forces 

obtained from the exact complex-angle Mie-scattering calculations and from the dipole-
approximation Eqs. (19) and (20), both for the s-polarized incident wave. Evidently, the 
agreement is very good, with deviations within a few percent caused by the accuracy of the 
dipole approximation. 

Table 1. Comparison of radiation forces for a particle with the parameters Eq. (21) and 

different permittivities pε , s-polarized incident wave, calculated using: (i) the dipole 

approximation [23], Eqs. (19) and (20), and (ii) the exact complex-angle Mie theory Eqs. 
(10)–(16). 

Force 
component 

2.25p =ε   15 0.14p i= +ε  

Dipole 
approximation

Complex-angle 
Mie theory  

Dipole 
approximation

Complex-angle 
Mie theory 

0/xF P  1.446⋅10−4 1.420⋅10−4  4.778⋅10−3 4.863⋅10−3 

0/zF P  –6.324⋅10−2 –6.233⋅10−2  –1.771⋅10−1 –1.760⋅10−1 

 

Force 
component 

5.65 0.75p i= − +ε   1p = −ε  

Dipole 
approximation

Complex-angle 
Mie theory  

Dipole 
approximation

Complex-angle 
Mie theory 

0/xF P  4.117⋅10−1 4.164⋅10−1  6.687⋅10−3 6.334⋅10−3 

0/zF P  –3.846⋅10−1 –3.824⋅10−1  4.300⋅10−1 4.161⋅10−1 

 

Thus, we have shown that the complex-angle Mie theory results for the radiation forces 
are fully consistent with other approaches and approximations. Now we demonstrate an 
application of the proposed theory to the study of optical forces in evanescent fields. The 
most interesting situations occur in the case of conducting particles. For dielectric particles, 
the force zF  is usually negative in the range of parameters considered [13,14,18,20,23] (see 

Fig. 4), i.e. attracts a particle towards the surface. It was suggested in [14] that the particle’s 
conductivity can be a source of the positive zF ; here we consider how this effect can be 

evaluated using our complex-angle Mie theory. 
We first consider a gold particle in water, Fig. 5(a). This case is characterized by a 

significant imaginary part of the permittivity 2
p pnε =  [37,38], which likely promotes high 

absolute values of the optical forces. At the same time, the considerable difference in 
refraction indices pn  and n  contributes to the oscillatory behavior of the curves. Note that 

x zF F>  for gold particles for almost the whole range of particle sizes. Furthermore, Fig. 

5(a) shows the possibility of positive zF  for large enough particles 2ka >  and s-polarized 
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illumination. This tendency becomes dominant for a “perfect metal” particle with 1pε = − , 

Fig. 5(b), where the vertical force zF  is always positive. The perfect-metal model 

qualitatively represents optical properties of some well-conducting metals at frequencies 
below the plasmon resonance [2]. All components of the normalized optical force exerted on 
conducting particles show a rather fast attenuation when the particle size increases, which can 
be attributed to the influence of absorption. The suppressed penetration of the radiation inside 
the particle and thus absence of the in-particle resonances is likely responsible for the fact that 
in Fig. 5(b) there are no oscillations, in contrast to the case of a dielectric particle (Fig. 4). 

 

Fig. 5. Dimensionless radiation force components xF  (black curves) and zF  (red curves) 

versus the particle size parameter ka for the s-polarized (solid curves) and p-polarized (dashed 
curves) incident wave. The parameters are the same as in Eq. (17) but with (a) 1.33n = , 

0.43 3.52pn i= +  (gold particle in water at 650=λ nm [3]) and (b) 1n = , pn i=  

(“perfect metal” particle). 

Finally, we characterize the physical origin of the optical forces considered above. In all 
cases, 0xF > , i.e., the force xF  is directed along the field momentum xp  (9). This enables us 

to associate the horizontal force with the surface energy flow of the evanescent field [the 
momentum component yp  (9) vanishes in the case of s- or p-polarizations]. At 1ka  , the 

horizontal force grows as 6
xF a∝  in Fig. 4 and in Fig. 5(b), which is typical for the 

electromagnetic momentum action on particles with real polarizability in the dipole 
approximation [37,38]. In contrast, 3

xF a∝  in Fig. 5(a) due to the non-zero imaginary part of 

the complex polarizability 3

2
p

p

a
ε ε

ε
ε ε

−
+

 [22,23,37] [see Eq. (19)]. At the same time, the 

vertical force shows a characteristic gradient-force behavior: 3
zF a∝  at 1ka   [see Eq. 

(20)], which is not surprising since 0zp = , and the force appears due to the inhomogeneous 

distribution of the energy density w  (9). 

5. Conclusion 

We have proposed a simple and efficient method for calculating the light scattering and the 
radiation force induced by an evanescent field interacting with a spherical particle. Our 
approach consists of a single complex-angle rotation applied to the standard Mie-scattering 
solutions. The results obtained by our method precisely coincide with those obtained within 
previous exact, but much more laborious and cumbersome, approaches [10–15] or, for the 
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case of small particles, within the dipole-scattering approximation [19–23]. At the same time, 
the complex-angle Mie theory offers considerable advantages including a more transparent 
and time-saving procedure, use of well-elaborated calculation schemes and software codes. 

We have illustrated the efficiency and applications of our approach by calculating the 
angular distributions of the far field scattered from the incident evanescent wave as compared 
to the known case of the propagating plane-wave incidence. Noteworthy, essentially the same 
code was used for both cases. Furthermore, we have examined the radiation forces exerted on 
various dielectric and metallic particles immersed in the evanescent field from a total-
reflecting dielectric interface. All calculations were made for s and p linear polarizations of 
the incident wave and for different particle sizes. We have found that the vertical force can be 
repulsive for metallic particles with size comparable to the wavelength, in agreement with 
previous anticipations [14,15,19,20,23,24,31]. 

Appendix A: Mie scattering formulas 

Here we collect formulas of the standard Mie theory. We mostly follow [4] but modify and 
adapt the Mie equations with special attention to the scattering near field and to the radial 
components which are typically omitted. As usual, it is assumed that a spherical particle of 

radius a  (placed at the origin) with electromagnetic parameters pε , pμ , p p pn ε μ=  scatters 

the incident z-propagating plane wave (1) in a medium with parameters ε , μ , and n εμ= . 

Using spherical coordinates ( ), , rθ φ  introduced with respect to the ( ), ,x y z  coordinates (see 

Fig. 1), the scattering is described with respect to planes determined by the azimuthal cross-
sections constφ = . In this manner, the in-plane and out-of-plane components of the 

amplitudes of the incident field (1) are re-defined as 

 
cos sin cos sin

,
sin cos sin cos

EEE H

EEE H

φ φ φ φε
φ φ φ φμ

⊥

⊥⊥ ⊥

−         = =         − −         

 



 
     (A1) 

In spherical coordinates, the components of the scattered fields, sE  and sH , are 
calculated via the following expansions: 

 

( ) ( )

( ) ( )

( )

1 1

1 1

2
1

1 1
, ,

1 1
, ,

1 1
sin 1 , sin

s s

s s
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r r

E E A b ia H E A ib a
r r

E E A ia H E
r r

θ θ

φ φ

εξ τ ξ π ξ τ ξ π
μ
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μ

θ ξ π θ

∞ ∞

⊥
= =

∞ ∞

⊥
= =

∞

⊥
=
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
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 

              
 

    
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 

 
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   ( )2
1

1 .A ib
ε ξ π
μ

∞

=

+    


 

(A2) 

Here ( )
2 1

1
A i

+=
+





 

, and each term in the sums describes a certain order of multipole 

radiation, namely, the a - and b -terms represent the electric and magnetic 2 -poles located 

at the origin. The radial and polar dependences of the solutions Eq. (A2) are contained in the 
functions 

 
( ) ( )( ) ( )

( )( )
( )

( ) ( ) ( ) ( )

1

1

1 1

, ,

cos cos
cos , cos .

sin

d krh kr
kr krh kr kr

d kr

P dP

d

ξ ξ

θ θ
π θ τ θ

θ θ

 
 ′= =

= =


  

 
 

  

  

 (A3) 
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where ( )( )1h u  are the spherical Hankel functions and ( )1P u  are the adjoint Legendre 

polynomials (well-defined in the complex domain). The scattering coefficients ( )a χ  and 

( )b χ  depend on the dimensionless particle radius kaχ =  and are given by 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, .
m m m m m m m m

a b
m m m m m m m m

′ ′ ′ ′− −
= =

′ ′ ′ ′− −
       

 
       

ε μ μ ε

ε μ μ ε

ψ χ ψ χ ψ χ ψ χ ψ χ ψ χ ψ χ ψ χ
ψ χ ξ χ ξ χ ψ χ ψ χ ξ χ ξ χ ψ χ

  (A4) 

Here the following parameters and functions are used: 

 

( ) ( ) ( ) ( )

, , ,

, ,

p p pn
m m m

n

d u j u
u u j u u

du

ε μ

ε μ
ε μ

ψ ψ

= = =

  ′= = 
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 (A5) 

where ( )j u  are the spherical Bessel functions. 

Finally, the Cartesian components of the scattered field are obtained via the standard 
rotational transformation connecting Cartesian and spherical coordinates: 

 

( ) ( )

( ) ( ) ( )

ˆ ˆ, , , ,

cos cos sin sin cos
ˆ ˆ ˆ, cos sin cos sin sin .

sin 0 cos

s s s s
x x

s s s ss s
y y

s s s s
z r z r
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E E H H

E E H HR R

E E H H

R R R

θ θ

φ φθ φ θ φ

θ φ φ θ φ
θ φ φ θ θ φ φ θ φ
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       
       

= = = =       
       
       

− 
 = − − =  
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E H   

 (A6) 

Equations (1), (A1)–(A6) represent the standard Mie scattering solution establishing the linear 
relation Eq. (12) between the scattered and incident (z-propagating plane wave) fields. 
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