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The concept of exchange length is used to determine the effects of boundary scattering on 
transport in samples of circular and rectangular cross section. Analytical expressions are 
presented for an effective mean free path for transnort in the axial direction. The relationship to 

A 

the phonon thermal conductivity is discussed. 

The properties of transport in confined geometries has 
received substantial attention in recent years (see, e.g., Ref. 
1). In this letter, the effects of boundary scattering on 
transport in small samples is examined. Our goal is to 
provide concise expressions for the effect of boundaries on 
transport without explicitly evaluating the Boltzmann 
equation. We present analytical expressions for the effec- 
tive mean free path in samples where the bulk mean free 
path is determined by other scatterers present in the sam- 
ple. Expressions are obtained for samples of circular and 
rectangular cross section. These results are applicable to 
samples which are small enough that the carrier mean free 
path is on the order of the sample dimensions but not so 
small that the carrier spectrum is substantially modified 
from the bulk. In other words, the sample dimensions will 
be assumed to be much greater than the carrier wave- 
length. 

We employ a method first proposed by Flik and Tier? 
for the calculation of the size effect in thin films. The 
method assumes that, for a carrier of a given frequency in 
a bulk sample, a characteristic mean free path, I, can be 
defined. The goal, then, is to examine how this bulk value 
of I is modified by the presence of boundaries in the sample. 
The calculation utilizes the concept of the exchange length 
I ex, 53 which is defined as the average distance normal to a 
plane that a carrier travels after having been scattered 
within that plane. Specifically, we consider a carrier that 
has undergone a scattering event within a plane that is 
perpendicular to the direction of net transport, which will 
be referred to from here on as the positive z direction. We 
now allow the carrier to propagate to the point of its next 
scattering event, which, in the bulk, is a distance I away. 
This propagation is assumed to proceed with equal likeli- 
hood in all directions. I,, is then defined as the average z 
component of all possible such propagation vectors, where 
the average is performed over the hemisphere in the posi- 
tive z direction. The bulk value of this quantity, I, is l/2. 

In the following, we consider the scenario in which the 
mean free path is on the order of the sample dimensions. 
For this case, some carriers will strike the boundaries be- 
fore traveling a full distance I and the exchange length will 
be correspondingly shorter. We will assume that scattering 
at the boundaries is diffuse, which will be valid when the 
carrier wavelength is smaller than the characteristic rough- 
ness features of the sample surface. This hypothesis needs 
to be examined within the context of a particular measure- 
ment, but holds for many materials. We note that a prin- 
ciple purpose of this work is to extend the most widely 

used form for the effects of boundary scattering on the 
thermal conductivity4 and in this form, perfect sample 
roughness is also assumed. We will also consider the sam- 
ple to be free of grain boundaries, though the expression 
derived could perhaps also be applied to samples whose 
grains have characteristic geometries which match those 
investigated here. 

We first calculate the exchange length for axial trans- 
port in a cylindrical sample of infinite length. We initially 
assume that the excitation can originate with equal likeli- 
hood anywhere within a given circular cross section of the 
sample. The average value of the exchange length in the 
sample, I,, , is then obtained by averaging I,, (which is 
itself an average over a hemisphere of solid angle) over the 
entire cross section. The geometry to be considered is 
shown in Fig. 1. We consider an excitation originating at 
some point a distance p from the center of the cross section 
of radius R and propagating in a random direction within 
the hemisphere of solid angle whose base is normal to the 
positive z direction. The quantity 8 is defined as the angle 
between the propagation vector 1 and the z axis, and 4 is 
the angle between the radius along which the origination 
point is located and the projection of I into the plane of the 
cross section. Note that I may or may not have length Z, 
depending upon whether or not it is truncated by a bound- 
ary. The average exchange length is then given by 

FIG. 1. Schematic diagram showing the geometry relevant for the calcu- 
lation of the exchange length for a wire of circular cross section. The case 
pictured is that for which I hits the boundary. 
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TABLE I. Summary of the equations for zx for the various different geometries and the various ranges of the mean free path I. R is the radius for the 
circular case, and a and b are the lengths of the sides for the rectangular case, with 6 taken to be the shorter of the two. d is equal to w. 

Cross section Range 

Circle 

Rectangle 

Square 

1<2R 

1>2R 

I<b 
bd<a i 
a<l<d 

lad 

F(d) 
F(G) -k G(b) 

F(a,b)+G(a,b) +G(b,a) 
H+exp( -4&Z) (J-H) 

l<a 
a<I<v% 

1 (p+q) P 1’ 
F(p,q) y- -+-. 

3rPq 12Trpq ’ Np,q1=--~+$(~+ ,/m) ---$.xs-~($)+(~~~‘$~~ 

H=$n bt-d +%I a+d +$-&d+b3-d3)-g1; 
(0) dd 

J= &[ if+ab)ln(~)+($~b)ln(~)]+&-$2 

where lZ is the z component of the propagation vector head- 
ing in the (6Q) direction and 4 has only been integrated 
over half its range for symmetry reasons. 

The evaluation of this integral involves a careful anal- 
ysis of the regions of (p&I) space where 1 does and does 
not hit the wall. This is of importance since the functional 
form of I, clearly depends on whether or not I is truncated 
by a collision with a wall. The details of this process are 
beyond the scope of this article and will be presented in a 
more comprehensive work.5 The expressions for T= for the 
circular case are given in Table I. 

We have also evaluated the average exchange length 
for samples of rectangular cross section. The general ex- 
pression for 2, is quite analogous to the circula_r case.5 

As in the circular case, the evaluation of 1, depends 
upon discerning which regions of phase space have zx, 
hitting the wall and which do not. The analysis of this 
problem will be presented in detail in Ref. 5. Because of the 
reduced symmetry of this case relative to the circular one, 
the solution needs to be broken down into more regimes. 
These results are shown in Table I. 

-The expressions presented thus far for the evaluation 
of 4x, for both the circular and rectangular cases, were 
derived on the assumption of uniform origination, i.e., we 
assume that the excitation can originate anywhere within 
the cross section with equal likelihood. As pointed out in 
Ref. 2, however, when the mean-free path of the excitation 
becomes much longer than the sample dimensions, the ex- 
citation becomes increasingly likely to scatter on a bound- 
ary and our assumption of uniform origination needs to be 
replaced with a boundary origination description. The cal- 
culation of the boundary origination solutions is straight- 
forward and the expressions for the two geometries are as 
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follows: Circular: I,== (4R/77) - ( R2/Z>; rectangular: 
I,,= J, where J is given in Table I. 

The appropriate procedure2 is to match these solutions 
to those for uniform origination at large 1’s. This can be 
accomplished by a simple exponential matching process, 
whereby the matched solution is obtained by adding the 
uniform origination solution to the ditference between the 
boundary and uniform solutions times an exponential func- 
tion. This process results in the equations in Table I where 
1>2R for the circular case and I>d for the rectangular case. 

These forms result in small discontinuities when they 
are combined with the solutions for I < 2R and I < d, re- 
spectively. The matched solutions contain a matching pa- 
rameter in the exponential functions which we choose to be 
four to achieve the best compromise between minimizing 
this discontinuity and “phasing in” the boundary origina- 
tion solution as quickly as possible as I increases. It should 
be noted that, for the rectangular case when a$ b, we can 
expect to be largely in the boundary origination regime 
before 1 exceeds the length of the diagonal. The above 
equation does not allow for this possibility and is therefore 
most applicable to cases in which a is not too different from 
b. For samples where one dimension is much larger than 
the other, we refer the reader to the results of Ref. 2 where 
an expression for thin films is derived. 

The expressions given in Table I can now be used to 
aid in the calculation of transport quantities in samples 
where boundary scattering is expected to play a role. The 
general procedure is as follows. We know that the bulk 
mean free path is given by two times the the bulk exchange 
length. Now, this relationship can be extended to the con- 
fined geometry case by defin&g an effe_ctive mean free path 
for axial transport as &= 21,, , where le, for axial transport 
is given by the expressions in Table I. 
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Let us apply this relationship to the thermal conduc- 
tivity. In the kinetic theory approximation, the thermal 
conductivity K is given by K= @l, where C is the contri- 
bution to the specific heat from the carrier in question and 
v is the carrier velocity. Now, in Ref. 2, it is asserted that, 
within this approximation, the transport K= along the z axis 
in a sample of confined geometry can be obtained from the 
bulk thermal conductivity K, and the Exchange length 
along that axis by the expression ~==~,l~/(l/2). It can 
easily be seen then that the value of the thermal conduc- 
tivity for the confined sample is obtained from the bulk 
expression by simply substituting I,, for I, i.e., K,(I) 

= K, ( leE), is defined above. 
Because of the simple geometric nature of this argu- 

ment, it is plausible that this sort of analysis can be applied 
to more sophisticated treatments of the thermal conductiv- 
ity as well. For instance, in the case of phonon transport, 
the thermal conductivity is often written in the Debye ap- 
proximation as an integral over phonon frequencies? 

K~(T)=~(~)3~3S06dI~~(~f;)17(T,~), (2) 

where x is the reduced phonon frequency h/kBT, k, is 
the Boltzmann constant, B. is the Debye temperature, and 
~(T,x) is the frequency dependent scattering time. The 
total inverse scattering time, r( TJ) -‘, is usually ex- 
pressed as a summation of the inverse scattering times 
from scatterers of various types. Within this context, the 
effect of boundaries is typically handled by a method due to 
Casimir4 whereby one adds a frequency independent term 
to this total of the form 7; i = v/ad, where d represents the 
sample dimension and a is a geometrical factor. 

We propose that greater accuracy may be achieved 
from calculations involving Eq. (2) by omitting the bound- 
ary scattering term in the total inverse scattering time and 
utilizing the equations in Table I for the exchange length to 
modify the mean free path instead. The proposed proce- 
dure is as follows. The factor r in Eq. (2) can readily be 
replaced by Z(x,T)/v, at which point the integration can be 
seen to be over the frequency-dependent mean free path 
multiplied by another x dependent factor. For each such 
mean free path, Z(x,T), a value of I,, can be derived by 
using the equation appropriate for the geometry of the 
particular sample under investigation. Each Z(x,T) in the 
integral can then be replaced by an Z,&x,T) as described 
above. The proper boundary limited value of the thermal 
conductivity is then obtained by integrating over the 
l,,(x,T), with the other factors in Eq. (2) left unaltered. 

An example of this process is pictured in Fig. 2. The 
graph shows two calculations of the thermal conductivity 
of diamond using Eq. (2) as a basis. The solid curve is 
taken from a recent work’ and uses the simple treatment 
whereby the boundary scattering is handled by the addi- 
tion of a constant term to the inverse scattering time.4 The 
form of the constant term is for axial transport along per- 
fectly rough grains of square cross section (a= 1.12). The 
model also includes a point defect scattering term and a 
phonon-phonon umklapp term. The dashed curve shows 
the results when all of the parameters of the model are left 

current 
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Method 
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FIG. 2. Calculation of the thermal conductivity of diamond using the 
current and Casimir methods. The present technique produces a 12% 
enhancement in the peak relative to the Casimir method. Model param- 
eters are taken from Ref. 7. 

unchanged but the boundary scattering is treated by the 
method described in this work (the square cross section 
equations are used). The assumptions about direction of 
transport and surface roughness are the same as for the 
solid curve. One can see that the present method produces 
a significant enhancement of the thermal conductivity peak 
relative to the Casimir method. 

In summary, we have presented analytical expressions 
for the effects of boundary scattering in samples where the 
bulk carrier mean free path is determined by other scatter- 
ers present. Results are derived for axial transport in long, 
narrow samples of circular and rectangular cross section, 
where scattering at the boundaries is diffuse. The results 
are incorporated into a definition of an etTective mean free 
path for axial transport which can be used to calculate 
coefficients such as the thermal conductivity. Though we 
have focused on thermal transport in the present work, the 
expressions derived here could be of use in the examination 
of a variety of transport phenomena in conlined geome- 
tries. 
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