Critical currents in quasiperiodic pinning arrays: One-dimensional chains and Penrose lattices

Vyacheslav Misko,^{1,2} Sergey Savel'ev,^{1,3} and Franco Nori ^{1,2}

¹ Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan ² Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA ³Physics Department, Loughborough University, UK

Summary

We have studied the critical depinning current J_c versus the applied magnetic flux Φ , for quasiperiodic (QP) one-dimensional (1D) chains and 2D arrays of pinning centers placed on the nodes of a five-fold Penrose lattice. In 1D QP chains, the peaks in $J_c(\Phi)$ are determined by a sequence of harmonics of the long and short segments of the chain. The critical current $J_{c}(\Phi)$ has a remarkable selfsimilarity. In 2D QP pinning arrays, we predict analytically and numerically the main features of $J_{c}(\Phi)$, and demonstrate that the Penrose lattice of pinning sites (which has many built-in periods) provides an enormous enhancement of $J_c(\Phi)$, even compared to triangular and random pinning site arrays. This huge increase in $J_c(\Phi)$ could be useful for applications.

 $x(\lambda)$