Critical currents in quasiperiodic pinning arrays: One-dimensional chains and Penrose lattices

Vyacheslav Misko, ${ }^{1,2}$ Sergey Savel'ev, ${ }^{1,3}$ and Franco Nori ${ }^{1,2}$

${ }^{1}$ Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan ${ }^{2}$ Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA ${ }^{3}$ Physics Department, Loughborough University, UK

Summary

We have studied the critical depinning current J_{c} versus the applied magnetic flux Φ, for quasiperiodic (QP) one-dimensional (1D) chains and 2D arrays of pinning centers placed on the nodes of a five-fold Penrose lattice. In 1D QP chains, the peaks in $J_{\mathrm{c}}(\Phi)$ are determined by a sequence of harmonics of the long and short segments of the chain. The critical current $J_{\mathrm{c}}(\Phi)$ has a remarkable selfsimilarity. In 2D QP pinning arrays, we predict analytically and numerically the main features of $J_{\mathrm{c}}(\Phi)$, and demonstrate that the Penrose lattice of pinning sites (which has many built-in periods) provides an enormous enhancement of $J_{c}(\Phi)$, even compared to triangular and random pinning site arrays. This huge increase in $J_{\mathrm{c}}(\Phi)$ could be useful for applications.

Model

We perform simulated annealing simulations of

$$
\eta \mathbf{v}_{i}=\mathbf{f}_{i}=\mathbf{f}_{i}^{v v}+\mathbf{f}_{i}^{v p}+\mathbf{f}_{i}^{T}+\mathbf{f}_{i}^{d} .
$$

The force due to the vortex-vortex interaction is

$$
\mathbf{f}_{i}^{v v}=\sum_{j}^{N v} f_{0} K_{1}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| / \lambda\right) \mathbf{r}_{i j}
$$

N_{v} is the number of vortices, K_{1} is a modified Bessel function, λ is the penetration depth, $\mathbf{r}_{i j}=\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) /\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|, f_{0}=\Phi_{0}{ }^{2} / 8 \pi^{2} \lambda^{3}$, and $\Phi_{0}=h c / 2 e$. The pinning force is
$\mathbf{f}_{i}^{v p}=\sum_{k}{ }^{N p} f_{p} \cdot\left(\left|\mathbf{r}_{i}-\mathbf{r}_{k}{ }^{(p)}\right| / r_{p}\right) \Theta\left[\left(r_{p}-\left|\mathbf{r}_{i}-\mathbf{r}_{k}^{(p)}\right|\right) / \lambda\right] \mathbf{r}_{i k}^{(p)}$, N_{p} is the number of pinning sites, f_{p} (expressed in f_{0}) is the maximum pinning force of each short-range parabolic potential well located at $\mathbf{r}_{k}{ }^{(\rho)}$
r_{p} is the range of the pinning potential, Θ is the Heaviside step function
All the lengths (fields) are expressed in units of $\lambda\left(\Phi_{0} / \lambda^{2}\right)$.
In the equation of motion, \mathbf{f}_{i}^{T} is the thermal stochastic force, and \mathbf{f}_{i}^{d} is the driving force; η is the viscosity.

