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Supplementary Figure 1 

 

Supplementary Figure 1. Real and imaginary parts of the susceptibility   in the weak driving 

regime. (a) Real part of the susceptibility. (Blue: r1 r2  , red: r1  , green: r2 ).  (b) Imaginary 

part of the susceptibility. (Blue: i1 i2  , red: 1i  , green: 2i ).  (c) Normalized transmission. The 

parameters used in (a)-(c) were obtained  in the experiments:  Decay rate of the first resonator 

was 1 1.05 GHz  ; decay rate of the second resonator was 2 3 MHz   and coupling strength 

was 67 MHz  .

 

 

 

 

 



Supplementary Figure 2

 

 

Supplementary Figure 2. Real and imaginary parts of the susceptibility   in the strong driving 

regime. (a) Real part of the susceptibility. (Blue: r1 r2  , red: r1  , green: r2 ).  (b) Imaginary 

part of the susceptibility. (Blue: i1 i2  , red: i1  , green: i2 ).  (c) Normalized transmission. The 

parameters used in (a)-(c) were obtained from experiments: Decay rate of the first resonator was 

1 1.05 GHz  ; decay rate of the second resonator was 2 3 MHz  ; coupling strength was 

1.52 GHz   

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 3

 

 

Supplementary Figure 3. Real and imaginary parts of the susceptibility   in the intermediate-

driving regime. (a) Real part of the susceptibility. (Blue: r1 r2  , red: r1  , green: r2 ).  (b) 

Imaginary part of the susceptibility. (Blue: i1 i2  , red: i1  , green: i2 ).  (c) Normalized 

transmission. The parameters used were obtained from experiments. Decay rate of the first 

resonator was  1 462 MHz  ; decay rate of the second resonator was 2 337 MHz  ; coupling 

strength was 186 MHz  . 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 4

 

 

Supplementary Figure 4. Theoretical (noise model) AIC per-point weights as the function of 

coupling strength for EIT, ATS, and EIT/ATS (intermediate-driving models). (Blue:

EITw  ,green: EIT/ ATSw , red and thicker: ATSw ) (a) The AIC per-point weight for the mode pair with 

Q~(1.91×10
5
,7.26×10

7
). (b)The AIC per-point weight for the mode pair with 

Q~(1.63×10
6
,1.54×10

6
). (c) The AIC per-point weight for the mode pair with 

Q~(1.78×10
6
,4.67×10

6
). The values of the parameters used in (a)-(c) are typical parameters 

observed in our experiments. Pairs of quality factors are the ones measured in the experiments 

(see Supplementary Fig. 5). 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 5

 

 

Supplementary Figure 5. Experimental AIC per-point weights as the function of coupling 

strength for EIT, ATS, and EIT/ATS (intermediate-driving models). (Blue: EITw  ,green: EIT/ ATSw , 

red and thicker: ATSw )  (a) The AIC per-point weight for the mode pair with 

Q~(1.91×10
5
,7.26×10

7
). (b)The AIC per-point weight for the mode pair with 

Q~(1.63×10
6
,1.54×10

6
). (c) The AIC per-point weight for the mode pair with 

Q~(1.78×10
6
,4.67×10

6
).  

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 6

 

 

Supplementary Figure 6. Theoretical (noise model) AIC weights as the function of coupling 

strength for ATS and EIT/ATS models. (Blue: ATSw , red: EIT/ ATSw )  (a) The AIC per-point weight 

for the mode pair with Q~(1.91×10
5
,7.26×10

7
). (b) The AIC per-point weight for the mode pair 

with Q~(1.63×10
6
,1.54×10

6
). (c) The AIC per-point weight for the mode pair with 

Q~(1.78×10
6
,4.67×10

6
).  

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 7

  

 

Supplementary Figure 7. Fitting with the intermediate-driving model to the experimentally 

obtained spectra. Blue: experiment, Orange: Intermediate-driving model fitting. (a) The fitting 

spectra for the mode pair with Q~(1.91×10
5
,7.26×10

7
). (b) The AIC fitting spectra for the mode 

pair with Q~(1.63×10
6
,1.54×10

6
). (c) The fitting spectra  for the mode pair with 

Q~(1.78×10
6
,4.67×10

6
). 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 1:  

Theoretical Model and Numerical Simulations 

Here we give the results of numerical simulations depicting the expressions derived in the 

subsection "Analogy between coupled optical resonators and three-level atoms" of the main text 

for different driving regimes. As shown in the main text, for the coupled resonator system, the 

output field is given as 
out p c 1A A A   where the intracavity field 1A can be written as 

1 c pA i A   with 
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where we used / 2k k ki     with 1,2k  . This solution   has a form similar to the response 

of an EIT medium (three-level atom) to a probe field. The normalized transmission  

2

out p/T A A  is written as  

 

22

c c i1 2T       . (2)
 

with i  representing the imaginary part of  . Since 
22

c1    and 
22

c c i     we can re-

write the transmission as  

 c i1 2T     (3) 

Clearly, it will be sufficient to analyze the behavior of i  only to understand the conditions 

leading to EIT or ATS. This is similar to considering the imaginary part of the susceptibility 

which determines the absorption of a probe in an atomic system. 

We can re-write the expression in Eq.(1) as 
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where   are the eigenfrequencies of the coupled system,  2 / 1/ 2 /i i            

satisfying 1     and  1 2 / 4    .  Depending on the system parameters, we have 

three different driving regimes1
,
2

,
3

,
4: 



(a) Weak-driving regime ( T  ). In this regime   is imaginary, that is ii  and 

rRe( ) 0    leading to real   (i.e.,   iIm 0    ) with   rRe 1/ 2 /        , 

and imaginary eigenfrequencies (i.e.,   rRe 0    ) with   iIm          where 

 1 2 / 4    . Thus the supermodes have the same resonance frequencies and are located at 

the center of the frequency axis, but they have different linewidths quantified by their imaginary 

parts. As a result, the real and imaginary parts of   become 
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from which we write the transmission as 
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We have plotted the expressions in Eqs. (5)-(7) in Supplementary Fig. 1 which shows that the 

normalized transmission becomes maximum around the zero frequency-detuning exactly where 

the imaginary part of   becomes minimum.  Clearly the transmission behavior of the system is 

determined by the i  .   

 

(b) Strong-driving regime ( T  ). In this regime 2   is real (i.e., i 0  and r 2   ) 

implying i      , that is the resonances are located at frequencies   with a spectral 

distance of 2  between them. The linewidths of the resonances are quantified by 

 Im / 4    . Moreover, we can approximate   as 1/ 2   . Then we can write the 

imaginary parts of   as 
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Consequently, the transmission in this regime becomes 
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with 0   . We have plotted ATST using the parameters obtained in the experiments and 

depicted it in Supplementary Fig. 2. Clearly, imaginary part of the susceptibility function 

determines the normalized transmission which consists of two Lorentzian resonances separated 

by 2 . We should note that i  shows Lorentzian peaks whereas the normalized transmission 

shows Lorentzian dips with a larger transparency window than that of the transmission spectra 

obtained for the weak-driving regime (EIT case).   

 

  

(c) Intermediate-driving regime ( T  ). In this regime r   is real (i.e., i 0  ). This leads 

to complex eigenfrequencies  1 2 r2 / 4i i         (i.e.,  Re 0r     and complex    

(i.e.,   iIm 0    ). Then    i 1 2Im / 4          with   rRe 1/ 2     . The 

real and imaginary parts of the eigenfrequencies are   rRe / 2       and 

   i 1 2Im / 4        , respectively. Thus the supermodes have different resonance 

frequencies which are located at / 2 , but have the same linewidths quantified by their 

imaginary parts    i 1 2Im / 4        . Consequently, we the real and imaginary parts of 

  become 
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which imply that i  is the sum of two same-sign quasi-Lorentzians centered at / 2 . The 

transmission at this region is then given as  
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where the second expression in the bracket is similar to the expression derived for the strong-

driving regime (ATS case). Thus we re-write Eq. (13) as 
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Supplementary Fig. 3 depicts the transmission function given in Eq. 14 together with the real 

and imaginary parts of the susceptibility.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Supplementary Note 2:  

Comparison among weak-driving regime (EIT), strong driving regime (ATS), and 

Intermediate-driving (EIT/ATS) models using the Akaike Information Criterion. 

In the main text, although we have derived the normalized transmission for weak, strong and 

intermediate driving regimes, in the model selection problem we used only the expressions for 

EIT (weak driving regime) and ATS (strong driving regime). The reason behind this was that the 

model for the intermediate-driving regime EIT/ATS contains two terms2: One is exactly the 

same as the expression derived for the strong driving regime (ATS) and the other is an 

interference term whose contribution can be set to zero or minimized by properly choosing the 

coupled modes or is set to zero or much lower values than the contribution from the ATS part 

during the curve-fitting algorithm due to the fact that 1C  is a free-parameter. Here we give the 

results of our study in which we performed curve fitting using the EIT, ATS and EIT/ATS 

models to the calculated theoretical transmission spectra obtained using experimentally relevant 

parameter values. In the transmission spectra we also included 1% Gaussian noise. Moreover, we 

give the AIC per-point weights for the three driving regimes. 

We have observed that the ATS and the EIT/ATS models have the same AIC per-point weights5. 

Results obtained for typical transmission spectra are depicted in Supplementary Fig. 4. As the 

coupling strength increases, the ATSw  and EIT/ ATSw  exhibit the same values. This is expected as 

we have mentioned above that the transmission in the intermediate-driving regime includes the 

contribution from the ATS model as shown in Eq. (14). Therefore, the ATSw  and EIT/ ATSw  are 

always have similar values as the system evolves from weak to strong driving regimes. These 

agree well with our experimental observations depicted in Supplementary Fig. 5. 

We also checked the difference between the ATS (strong driving regime) and the EIT/ATS 

(intermediate driving regime) models by calculating the AIC weights5 without the averaging 

effect. The binary weights in Supplementary Fig. 6 reveals that the AIC weights of the 

EIT/ATS model is always lower than those of ATS model, because although the EIT/ATS model 

gives a more precise fitting to the experimental data, the higher number of free parameters in the 

EIT/ATS model adds larger cost (i.e., increased penalty) and hence reduces the weights of this 

model.  



 

Finally, we used the intermediate driving model (EIT/ATS) to fit to the typical transmission 

spectra obtained in our experiments. The results are depicted in Supplementary Fig. 7. It is seen 

that for the transmission spectra for EIT case (same as the one in the main text), the EIT/ATS 

model do not provide a good fit although it has more free parameters. The discrepancy is 

significant around the zero-detuning where we have the transparency window. For the spectra 

obtained for the ATS and EIT-to-ATS transition, we see that the EIT/ATS model provides a 

curve-fitting at least as good as the ATS model.  
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