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Simulating quantum mechanics is known to be a difficult computational problem, especially when
dealing with large systems. However, this difficulty may be overcome by using some controllable
quantum system to study another less controllable or accessible quantum system, i.e., quantum
simulation. Quantum simulation promises to have applications in the study of many problems in, e.g.,
condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology.
Quantum simulation could be implemented using quantum computers, but also with simpler, analog
devices that would require less control, and therefore, would be easier to construct. A number of
quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors,
superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators.
This review outlines the main theoretical and experimental aspects of quantum simulation and

emphasizes some of the challenges and promises of this fast-growing field.
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TABLE L

Strengths and weaknesses of some of the proposed and demonstrated quantum simulators.

Quantum simulator

Strength

Neutral atoms

Trapped ions

Cavity arrays

Electronic spins (quantum dots)
Superconducting circuits
Photons (linear optics)

Nuclear spins (NMR)

Scaling®

Flexibility”

Individual control and readout’
Individual control and readout
Individual control and readout,” tunability
Individual control and readout,” tunability

Well-established, readily available technology’

Weakness
Individual control and readout
Scaling
Scaling
Scaling
Scaling (some recent progress)
Scaling

Scaling, no individual control

“An asterisk means that the feature has been experimentally demonstrated. By scaling we mean controlling an array of at least a few
tens of qubits. By individual control we refer to the ability of controlling and measuring each individual qubit. The weaknesses refer to

the actual experimental implementations.

of the system. Furthermore, simulating the temporal evolution of
the system requires a number of operations that also increases
exponentially with the size of the system. This exponential
explosion is unavoidable, unless approximation methods (e.g.,
Monte Carlo methods) are used. However, depending on the
specifics of the problem under study, good approximations are not
always available or they also face some limitations. Therefore, the
simulation of quantum systems in general remains ahard task even
for today’s supercomputers.

A proposed solution to this problem came in the new
type of computer envisaged by Richard Feynman (Feynman,
1982)—the quantum computer. In fact, as has become clear
over the past three decades, a quantum computer promises to
do much more than simulating quantum mechanics, and today
quantum computation and quantum information theory are
very active research fields [see, e.g., Nielsen and Chuang
(2000), Schleich and Walther (2008), and Stolze and Suter
(2008))]. Feynman realized at the time that a quantum
machine would itself experience an exponential explosion,
but with good consequences. The machine would have the
capacity to contain an exponentially large amount of infor-
mation without using an exponentially large amount of
physical resources, thus making it a natural tool to perform
quantum simulation. Despite the great importance of his
insight, however, he was not very specific about how his
proposed quantum mechanical computer was supposed to
function or how the simulation itself would be realized, as can
be seen from the following quote:

“Let the computer itself be built of quantum mechani-
cal elements which obey quantum mechanical laws.”
(Feynman, 1982).

More than a decade later, it was shown (Lloyd, 1996) that a
quantum computer (i.e., an ensemble of well-defined qubits
that can be initialized, measured, and on which universal
quantum gates can be performed) can indeed act as a universal
quantum simulator. Here the word universal refers to the fact
that, except for changes in the programs that it runs, the same
machine is capable of tackling vastly different problems.
However, a quantum computer (as defined above) is not
necessarily required for implementing quantum simulation.
Simpler quantum devices that mimic the evolution of other
quantum systems in an analog manner could be used for this
task (note that these are not universal simulators, but rather
problem-specific machines). It is therefore expected that
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practical quantum simulation will become a reality well
before full-fledged quantum computers.

In recent years, the interest in quantum simulation has been
growing rapidly, and the reason for this is twofold. First, there
are a large number of potential applications of quantum
simulation in physics, chemistry, and even biology. Second,
the technologies required for the coherent control of quantum
systems have matured enough to allow for the physical
implementation of practical quantum simulation in the very
near future. In fact, some proof-of-principle experiments on
quantum simulation have already been realized [see, e.g.,
Greiner et al. (2002), Leibfried et al. (2002), Friedenauer
et al. (2008), Neeley et al. (2009), Gerritsma et al. (2010),
Kim et al. (2010), and Lanyon et al. (2010)].

Quantum simulation will provide a valuable tool that
researchers from numerous fields will want to add to their
toolbox of research methods. For instance, in condensed-
matter physics, quantum simulation would allow the study
of many difficult problems, such as quantum phase tran-
sitions, quantum magnetism, or high-7. superconductivity.
Other potential application areas include high-energy
physics, quantum chemistry, cosmology, and nuclear
physics.

With the latest advances in the coherent manipulation of
quantum systems (Ladd et al., 2010; Buluta, Ashhab, and Nori,
2011), such as atoms in optical lattices, trapped ions, nuclear
spins, superconducting circuits, or spins in semiconductors,
practical applications of quantum simulation can be expected in
the coming years. Several research groups are now actively
aiming at the experimental realization of quantum simulators
with tens of qubits, which would be the first practical applica-
tions in which quantum computers outperform their classical
counterparts.

There is by now a sizable literature on quantum simulation,
especially papers published in the past decade. However,
besides the brief overview of quantum simulators by Buluta
and Nori (2009) and the specialized reviews focused on cold
atoms (Jaksch and Zoller, 2005; Lewenstein et al., 2007,
Bloch, Dalibard, and Nascimbene, 2012), ions (Blatt and
Roos, 2012; Schneider, Porras, and Schaetz, 2012), photons
(Aspuru-Guzik and Walther, 2012), superconducting circuits
(Houck, Tiireci, and Koch, 2012), and quantum chemistry
(Kassal et al., 2011; Lu et al., 2012), a global review of the
field is missing. Moreover, a comprehensive, pedagogic
introduction to the subject would benefit researchers just
entering the field, as well as those already working on
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references. We note that this is not an exhaustive list.

Potential applications of quantum simulators and the physical systems in which they could be implemented, along with relevant

Application

Proposed implementation

Condensed-matter physics:

Hubbard models

Spin models

Quantum phase transitions

Spin glasses

Disordered systems

Frustrated systems
High-T'. superconductivity

BCS pairing

BCS-BEC crossover
Metamaterials
Time-symmetry breaking
Topological order

Atoms (Jaksch et al., 1998; Greiner et al., 2002)

Ions (Deng, Porras, and Cirac, 2008)

Polar molecules (Ortner et al., 2009)

Quantum dots (Byrnes ef al., 2008)

Cavities (Greentree et al., 2006; Hartmann, Brandao, and Plenio, 2006;
Angelakis, Santos, and Bose, 2007)

Atoms (Jané et al., 2003; Garcia-Ripoll, Martin-Delgado, and
Cirac, 2004, Simon et al., 2011; Struck et al., 2011)"

Ions (Jané et al., 2003; Porras and Cirac, 2004b; Deng, Porras, and Cirac, 2005;
Bermudez, Porras, and Martin-Delgado, 2009; Edwards et al., 2010; Lanyon
et al., 20117, Kim et al., 2011; Britton et al., 2012)"

Cavities (Cho, Angelakis, and Bose, 2008a; Chen et al., 2010)

Nuclear spins on diamond surface (Cai et al., 2013)

Superconducting circuits (Tsokomos, Ashhab, and Nori, 2010)

Electrons on helium (Mostame and Schiitzhold, 2008)

Atoms (Greiner et al., 2002)

Polar molecules (Capogrosso-Sansone et al., 2010; Pollet et al., 2010)

Ions (Retzker et al., 2008; Friedenauer et al., 2008)";

Ivanov et al., 2009; Giorgi, Paganelli, and Galve, 2010

NMR (Peng, Du, and Suter, 2005; Roumpos, Master,
and Yamamoto, 2007; Zhang et al., 2008)

Superconducting circuits (van Oudenaarden and Mooij, 1996)"

DQS (Lidar and Biham, 1997)

Superconducting circuits (Tsomokos, Ashhab, and Nori, 2008)

Atoms (Schulte er al., 2005; Fallani et al., 2007";

Billy ez al., 2008; Roati et al., 2008)

Ions (Bermudez, Martin-Delgado, and Porras, 2010)

Superconducting circuits (Garcia-Ripoll, Solano,
and Martin-Delgado, 2008)

NMR (Alvarez and Suter, 2010; Banerjee et al., 2013)

Ions (Porras and Cirac, 2006b; Kim et al., 2010)

Photons (Ma et al., 2011)"

DQS (Yamaguchi and Yamamoto, 2002)

Quantum dots (Manousakis, 2002)

NMR (Yang et al., 2006)"

Atoms (Regal, Greiner, and Jin, 2004; Zwierlein et al., 2005)

Superconducting circuits (Rakhmanov et al., 2008)

Superconducting circuits (Koch et al., 2010)

Atoms (Aguado et al., 2008)

Polar molecules (Micheli, Brennen, and Zoller, 2006)
Linear optics (Lu et al., 2009)
Superconducting circuits (You et al., 2010)

Experimental realizations.

quantum simulation and looking for a quick reference guide.
Since quantum simulation is a subject of interest to a broad
audience, this review attempts to provide a self-contained
description of the current status of theoretical and exper-
imental research on the subject. However, given the breadth
of the topics touched by quantum simulation, not all technical
details can be provided here, and the interested reader is
directed to the relevant references instead.

The remainder of this review is organized as follows.
Sections II-V discuss in some detail the basic theory.
Readers interested only in the physical implementations of
quantum simulation can concentrate on Sec. VI, while those
interested in the applications of quantum simulation can
concentrate on Sec. VII. Tables I-III provide quick reference
guides for the content of Secs. VI and VII. In Sec. VIII
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we discuss the challenges and prospects of quantum
simulation.

II. THE PROBLEM

“The rule of simulation that I would like to have is
that the number of computer elements required to
simulate a large physical system is only to be
proportional to the space-time volume of the physi-
cal system. I don’t want to have an explosion”
(Feynman, 1982).

We consider a rather general quantum simulation problem,
namely, that of finding the state of a quantum system
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TABLE III.
exhaustive list.
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Continuation of Table II, but focused on applications other than condensed-matter physics. As in Table II, this is not an

Application

Proposed implementation

High-energy physics:
Lattice gauge theories

Dirac particles

Nucleons
Cosmology:

Unruh effect

Hawking radiation

Universe expansion

Atomic physics:
Cavity QED
Cooling
Open systems:

Chemistry:
Thermal rate calculations
Molecular energies

Chemical reactions

Quantum chaos:

Interferometry:

Other applications:
Schrodinger equation
Quantum thermodynamics

DQS (Byrnes and Yamamoto, 2006)
Atoms (Biichler er al., 2005)

Tons (Lamata et al., 2007; Casanova et al., 2010, 2011;
Gerritsma et al., 2010"; Rusin and Zawadzki, 2010)
Atoms (Goldman er al., 2009; Hou, Yang, and Liu, 2009;
Cirac, Maraner, and Pachos, 2010)
Photons (Semiao and Paternostro, 2012)

Ions (Alsing, Dowling, and Milburn, 2005)

Atoms (Giovanazzi, 2005)

Tons (Horstmann et al., 2010)

Superconducting circuits (Nation et al., 2009)

BEC (Fischer and Schiitzhold, 2004)

Tons (Schiitzhold and Mostame, 2005;
Menicucci, Olson, and Milburn, 2010)

Superconducting circuits (You and Nori, 2003; Wallraff et al., 2004)"
Superconducting circuits (Grajcar et al., 2008)"; You and Nori, 2011)

NMR (Tseng et al., 2000)"
Tons (Piilo and Maniscalco, 2006; Barreiro et al., 2011)
Superconducting circuits (Li ez al., 2013)’

DQS (Lidar and Wang, 1999)

DQS (Aspuru-Guzik et al., 2005)
Linear optics (Lanyon et al., 2010)"
NMR (Du et al., 2010)

DQS (Kassal et al., 2008)

Quantum dots (Smirnov et al., 2007)

NMR (Weinstein et al., 2002)
Linear optics (Howell and Yeaze, 1999)

Ions (Leibfried ef al., 2002°; Hu, Feng, and Lee, 2012;
Lau and James, 2012)
Photons (Aaronson and Arkhipov, 2011; Broome et al., 2013
Crespi et al., 2013; Spring et al., 2013; Tillmann et al., 2013)°
Superconducting circuits (Zhou, Dong et al., 2008; Liao et al., 2010)

DQS (Boghosian and Taylor, 1998a)
Superconducting circuits (Quan ez al., 2006, 2007)

Experimental realizations.

described by the wave function |p) at some time ¢ and
computing the value of some physical quantity of interest.
Focusing for simplicity on time-independent Hamiltonians
(denoted H), the solution of the Schrodinger equation:

d
i 1#) = Hlo) 1)

is given by |¢(7)) = exp{—inH1t}|p(0)). In order to compute
|p(¢)) numerically, it is first necessary to discretize the
problem such that it can be encoded in the computer memory.
As mentioned earlier, the amount of memory required for
representing quantum systems grows exponentially with the
system size, and so does the number of operations required to
simulate the time evolution. For instance, representing the
state of N spin-1/2 particles requires 2" numbers (namely, the
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complex probability amplitudes for the different spin con-
figurations), and this is without including the particles’
motional degrees of freedom. Calculating the time evolution
of this system requires exponentiating a 2V x 2V matrix. We
take as an example the standard “threshold” N =40 fre-
quently cited in the literature (Lloyd, 1996; Cirac and Zoller,
2003; de Raedt et al., 2007; Friedenauer et al., 2008). This
implies storing 24° ~ 10'> numbers for |¢). (For the moment,
we will not worry about the Hamiltonian with its 240 x 240 ~
10?* matrix elements, because for realistic physical problems
the Hamiltonian has a very regular structure and just encoding
it in the computer memory does not suffer form the
exponential-explosion problem.) Assuming single precision,
about ~3.2 x 10'3 bits, that is 4 TB (terabytes) are required to
represent the spin state of 40 particles in a computer memory.
In order to put this in perspective, the U.S. Library of
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Congress has almost 160 TB of data. Double the number of
spins, and ~3.8 x 10% bits (or 5x 10'> TB) would be
required. This is roughly 10* times more than the amount
of information stored by humankind in 2007, which was
estimated to be 2.4 x 102! bits (Hilbert and Lopez, 2011).

Classical stochastic methods, namely, Monte Carlo algo-
rithms (Suzuki, 1993), have been developed as a way of
tackling the difficult problem of simulating large quantum
systems. These methods allow the evaluation of phase space
integrals for many-body problems in a time that scales
polynomially with the number of particles. Such stochastic
methods generally work well when the functions being
integrated do not change sign (and ideally vary slowly with
respect to the relevant variables), such that sampling the
function at a relatively small number of points gives a good
approximation to the integral of the function. For some
quantum systems, especially fermionic and frustrated systems,
the numerical evaluation of the integrals encounters the
problem of sampling with nonpositive-semidefinite weight
functions, which is the so-called sign problem (Troyer and
Wiese, 2005). This results in an exponential growth of the
statistical error, and hence the required simulation time, with
the number of particles, which cancels the advantage of the
Monte Carlo methods. Other methods of solving quantum
many-body problems such as density functional theory, mean-
field theories, many-body perturbation theories or Green’s
function-based methods, coupled clusters, etc. [see Thouless
(1972), Zagoskin (1998), and Fetter and Walecka (2003)] have
similar validity criteria that restrict their applicability to well-
behaved systems.

III. DEFINITIONS

The alternative simulation method initially proposed by
Feynman, i.e., quantum simulation, can be loosely defined as
simulating a quantum system by quantum mechanical means.
This very general definition allows us to include three types of
simulation:

e digital quantum simulation,
* analog quantum simulation, and
e quantum-information-inspired  algorithms for the
classical simulation of quantum systems.
These are discussed in some detail in the following sections.

By quantum simulator, we understand a controllable
quantum system used to simulate or emulate other quantum
systems [see, e.g., Buluta and Nori (2009)].

We denote the state of the simulated system by |¢@).
The system evolves from the initial state |¢(0)) to |¢(1))
via the unitary transformation U = exp{—inHyt},
where Hg, is the Hamiltonian of the system. The
quantum simulator is a controllable system: the initial state
|w(0)) can be prepared, the desired unitary evolution U’ =
exp{—ihHgyt} with Hg,, being the controllable Hamiltonian
of the simulator can be engineered, and the final state |y(t))
can be measured. If a mapping between the system and the
simulator [i.e., between |@(0)) and |y(0)), and between |¢(1))
and |y (7))] exists, then the system can be simulated. The basic
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Quantum system

16(0)) = |(t))

A

Quantum simulator

PR S A

Y
1/ (0)) === (1))
Evolution
Preparation Measurement

FIG. 1 (color online). Schematic representation of a quantum
system and a corresponding quantum simulator. The quantum
state |¢(0)) evolves to |p(7)) via the unitary transformation
U = exp{—ihHgt}. The quantum simulator evolves from the
state |y (0)) to |y(t)) via U = exp{—ihHyt}. The simulator is
designed such that there is a mapping between the simulator and
the simulated system, in particular, the mappings |¢(0))<>|w(0)),
lp(1))<>|w(t)), and U«>U’. While the simulated system may not
be controllable (or not experimentally accessible in some cases),
the quantum simulator is. Namely, the initial state |y(0)) can be
prepared, the unitary evolution U’ can be engineered, and the
final state |y(¢)) can be measured. The result of this measurement
provides information about the simulated system. The colored
arrows denote the controllable operations. The solid black arrows
describe the time evolution of the system and the simulator. The
dashed arrows indicate the correspondence between the quantum
states of the simulator and the simulated system.

idea of quantum simulation is represented schematically
in Fig. 1.

IV. DIGITAL AND ANALOG QUANTUM SIMULATION

The advantage of quantum simulators over classical devices
is that, being quantum systems themselves, they are capable of
storing large amounts of information in a relatively small
amount of physical space. For example, the storage capacity
of N qubits is exponentially larger than that of N classical bits.
Going back to the example given in Sec. III, the quantum state
of N =40 spin-1/2 particles, which would require a 4 TB
classical memory register, can be represented by a 40-qubit
(i.e., S-quantum-byte) register. If the time evolution of the
simulator reproduces the time evolution of the simulated
system, the desired final state can be obtained without the
need for numerically exponentiating a 2 x 2¥ matrix. This
sounds very promising, but the quantum simulation problem is
not really solved unless the initial-state preparation, the
implementation of the time evolution, and the measurement
are realized using only polynomial resources. The importance
of measurement must be stressed because the success of
quantum simulation ultimately depends on the ability to
extract useful information from the simulator. As discussed
later, these are not easy tasks, even for quantum simulators.
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A. Digital quantum simulation

We consider the well-known circuit model for quantum
computation (Nielsen and Chuang, 2000). The wave function
|@) has to be encoded using the computational basis, i.e., as a
superposition of binary bit strings. A very simple example is
the simulation of spin-1/2 particles. Each particle is repre-
sented by a qubit: the spin-up state |1) is encoded as the qubit
state |1), and the spin-down state ||) as |0). For example, the
three-spin state |¢) = |11 ) is represented in the simulator
by |y) = [110).

In order to obtain |y(t)) =exp{—ihH}|y(0)), U =
exp{—ifiHt} must be applied to the initial state. The com-
plicated many-qubit unitary transformation U is implemented
through the application of a sequence of single- and two-qubit
gates (we will come back and discuss the decomposition of U
into these simple gates shortly). Such a circuit-based quantum
simulation recreating the evolution |y (0)) — |y/(¢)) is usually
referred to as digital quantum simulation (DQS). Some of the
representative studies on DQS are Lloyd (1996), Wiesner
(1996), Abrams and Lloyd (1997), Lidar and Biham (1997),
Zalka (1998a, 1998b), Terhal and DiVincenzo (2000), Ortiz
et al. (2001), Marzuoli and Rasetti (2002), Somma et al.
(2002), Verstraete, Cirac, and Latorre (2009), and Raeisi,
Wiebe, and Sanders (2012).

Since any unitary operation can be written in terms of
universal quantum gates, it follows that in principle “any-
thing” can be simulated, i.e., DQS is universal (Lloyd, 1996).
However, it must be noted that not any unitary operation can
be efficiently simulated (that is with polynomial resources)
and, therefore, there are Hamiltonians that cannot be effi-
ciently simulated in this way. Nevertheless, it is possible to
efficiently simulate any finite-dimensional local Hamiltonian.
This is particularly important since all local spin systems, and
all Hamiltonians that can be efficiently mapped to such
systems, are included in this class. In other words, although
not all mathematically allowed Hamiltonians can be simulated
efficiently, those that appear in most physical theories can be
simulated efficiently. Note that finding an efficient decom-
position in terms of universal gates can in itself be a difficult
problem (Daskin and Kais, 2011). Furthermore, it must be
stressed that the implemented unitary operation (i.e., that
obtained from the decomposition into single- and two-qubit
gates) is generally an approximation of the desired unitary
evolution. In principle, this approximation can be made
arbitrarily accurate (by refining the decomposition), but this
comes at the cost of an ever-increasing number of gates.

Although DQS algorithms rely on applying a time-ordered
sequence of gates, thus implementing a unitary evolution of
the simulator, DQS is not restricted to recreating the temporal
evolution of the simulated system. Applications of DQS also
include obtaining certain properties of a given quantum
system [e.g., phase estimation for computing eigenvalues of
operators, particularly the Hamiltonian (Abrams and Lloyd,
1999; Aspuru-Guzik et al., 2005; H. Wang et al., 2010), or
computing partition functions (Lidar and Biham, 1997)].
Moreover, according to Meyer (2002) it should also be
possible to use quantum computers to simulate classical
physics more efficiently [see also Sinha and Russer (2010)
and Yung et al. (2010)].
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In general, DQS consists of three steps: initial-state prepa-
ration |y(0)), unitary evolution U, and the final measurement.
These steps are discussed in detail in Sec. IV.A [see also
(Brown, Munro, and Kendon (2010)].

Initial-state preparation.—The first step of the simulation is
to initialize the quantum register to the state |y(0)). In many
cases the preparation of the initial state is difficult and an
efficient algorithm may not be available. Fortunately, for
particular cases of interest efficient state preparation is
possible. For example, a method for generating a state that
encodes the antisymmetrized many-particle state of fermions
(including all the possible permutations), starting from an
unsymmetrized state (e.g., |000---0)) with polynomial
resources was given by Abrams and Lloyd (1997). The
preparation of N-particle fermionic states of the following
form:

N
lw(0)) = [ ] b}Ivac). 2)
j=1

where |vac) is the vacuum state and b]I and b; are the
fermionic creation and annihilation operators, was discussed
by Ortiz et al. (2001, 2002) and Somma et al. (2002, 2003). A
quantum algorithm for the efficient preparation of physically
realistic quantum states on a lattice (arbitrary pure or mixed
many-particle states with an arbitrary number of particles) was
proposed by Ward, Kassal, and Aspuru-Guzik (2009), while
Kassal er al. (2008) showed that the most commonly used
chemical wave functions can be efficiently prepared. A
quantum algorithm for preparing a pure state of a molecular
system with a given number m of electrons occupying a given
number n of spin orbitals that exhibits polynomial scaling in
m (regardless of n) was proposed by Wang, Ashhab, and Nori
(2009) (see Fig. 2). Wang, Ashhab, and Nori (2011) proposed
a state-preparation algorithm that incorporates quantum sim-
ulation: the time evolution of the quantum system is simulated
including the interaction with ancilla, i.e., auxiliary, qubits that
can inject or absorb any specified amount of energy from the
system, thus preparing any desired energy eigenstate.

—x]
[vr(n, 1)) i 0)

Q(n—2,1)

‘0>®(n—2)

FIG. 2. [Initial-state preparation. Quantum circuit for the recur-
sive procedure used to find an efficient gate sequence for
preparing a given target state |wr(n, 1)) of one electron occupy-
ing n possible orbitals. The procedure uses reverse engineering,
where one considers the problem of transforming the target state
to the initial state |0)®". This reverse problem allows an intuitive,
systematic solution. Once the solution of this inverse problem is
found, it can be inverted in order to prepare the target state
[y (n, 1)) from the initial state |0)®". The unitary operations H
and H’ can be calculated easily from the given target state: each
one of them transforms the known state of the corresponding
qubit to |0). The unitary operation Q(n—2,1) transforms
lyr(n—2,1)) into |0)®"=2) Adapted from Wang, Ashhab,
and Nori, 2009.
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Unitary evolution.—We now discuss in more detail how to
obtain U. We assume that the Hamiltonian can be written as a
sum of many terms that describe local interactions:

M
H= ZH,. (3)
=1

Examples of Hamiltonians of this form include the Hubbard
and Ising Hamiltonians. If [H;, Hy| = 0 for all [ and /', then

U= H exp{—ihH,t}. )
1

In this case, the decomposition of U into a sequence of local
gates is straightforward. Unfortunately, in most cases of
practical interest [H;, Hy] # 0 in general. As a result, when
taken as a whole, the decomposition of U cannot be obtained
efficiently using classical methods. An important step in this
regard is breaking up the evolution time into a large number of
small time steps of duration A¢ each:

U = (exp{—ihHAL})"/A", 6))

There are approximations available for decomposing
exp{—ihHAt} into local gates. For example, the first-order
Trotter formula [see, e.g., Nielsen and Chuang (2000), Ortiz
et al. (2001), and Somma et al. (2002)] gives

U(Ar) = oY HIAT _ He—ihH,At +O((AD?).  (6)
1

As a result, when At — 0,
U(Af) ~ [ | exp{—inH At} (7)
1

The drawback of this approach is that high accuracy comes at
the cost of very small At and therefore a very large number of
quantum gates. Recent results have reemphasized the short-
comings of using this first-order Trotter formula (Brown,
Clark, and Chuang, 2006; C. R. Clark et al., 2009; Whitfield,
Biamonte, and Aspuru-Guzik, 2011), showing that higher-
order decompositions can be more efficient [see, e.g., Diir,
Bremne, and Briegel (2008)]. Recently quantum algorithms
for simulating time-dependent Hamiltonian evolutions on a
quantum computer have also been investigated (Wiebe
et al., 2011). The topic was further discussed by Poulin ef
al. (2011), where it was shown that by using randomness it is
possible to efficiently simulate local bounded Hamiltonians
with arbitrary time dependence.

We now consider an example of constructing rather com-
plex operations from simple quantum gates. Take the
Hamiltonian

H=0{Q®7c ® - Qoy, )

where of is the Pauli matrix acting on spin (qubit) i.
Throughout the paper we denote by of, with a =x, y, z,
the corresponding Pauli matrix acting on spin (qubit) i. The
quantum circuit in Fig. 3 realizes the unitary transformation
U = exp{—inHt} for N = 3 (Nielsen and Chuang, 2000). It
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FIG. 3. Quantum circuit for simulating the three-body Hamil-

tonian H = 65 ® 65 ® o5. The circuit contains six CNOT gates
and utilizes a fourth, ancilla qubit (bottom line) in order to
achieve the desired effective Hamiltonian. From Nielsen and
Chuang, 2000.

is composed of six two-qubit (CNOT) gates and one single-
qubit gate. Note that an ancilla qubit is used. Similar quantum
circuits can be written for any product of Pauli matrices

H =@, o )

Although the example above might look simple, the
efficient simulation of a general many-body interaction
Hamiltonian using two-body interactions is by no means
easy (Bennett ef al., 2002; Nielsen et al., 2002). This question
has been thoroughly studied, and several methods have been
developed [see, e.g., Dodd et al. (2002), Wang and Zanardi
(2002), Wocjan, Janzing, and Beth (2002), Wocjan, Rotteler,
Janzing, and Beth (2002a, 2002b), Bremner, Bacon, and
Nielsen (2005), Hastings (2006), Berry et al. (2007),
Bravyi et al. (2008), Diir, Bremne, and Briegel (2008), and
Brown ef al. (2011)], but it still remains a difficult problem.
Moreover, note that ancilla qubits are required, which adds to
the resource requirements (see Sec. V.B).

We now take a look at another example: the algorithm given
by Aspuru-Guzik et al. (2005) for the calculation of molecular
energies using a recursive phase-estimation algorithm. The
quantum circuit is shown in Fig. 4. This procedure provides an
arbitrarily accurate estimate of the energy, with the accuracy
increasing with increasing number of iterations. The first
iteration gives a rough estimate for the energy. This estimate is
then used as a reference point for the next iteration, which

Ve AV VEAVE

0) —H]
o) ] QFT*
0) —]
0) H | .

A

g

FIG. 4. Quantum circuit for the calculation of molecular energies in
Aspuru-Guzik et al. (2005). The circuit implements the recursive
phase estimation algorithm. The first iteration gives the phase ¢
(which represents the molecular energy) to four bits of accuracy. Each
subsequent iteration incorporates the previous estimate and increases
the accuracy by one bit, i.e. reduces the uncertainty by a factor of 2.
Here H denotes the Hadamard gate, QFT™" is the inverse quantum
Fourier transform, and V; = [exp(—i2z¢;_;)V,_;]?. Adapted from
Aspuru-Guzik et al., 2005.
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a

FIG. 5. Quantum circuits (a) for the measurement of the
quantity (UV) for two unitary operators U and V, and (b) for
the measurement of the spectrum of a Hermitian operator Q. Both
algorithms use one ancilla qubit, which is initially prepared in the
state |+) = (|0) +|1))/v/2. The black dot represents a |1)-
controlled gate and the white dot a |0)-controlled gate. Adapted
from Somma er al., 2002.

yields a better estimate. The procedure is repeated until the
desired precision is obtained.

So far, the literature has generally focused on the discrete
evolution of a quantum system, but recently, continuous
evolution has also been discussed (McKague, Mosca, and
Gisin, 2009; Biamonte et al., 2011). Furthermore, it is usually
assumed that there is no restriction in applying one- and two-
qubit gates and that all qubits of the simulator can be
individually addressed and measured. An interesting question
is what Hamiltonians can be simulated under certain control
constraints. For example, Kraus, Wolf, and Cirac (2007)
discussed the class of Hamiltonians that can be simulated
when one is restricted to applying translationally invariant
Hamiltonians. They showed that if both local and nearest-
neighbor interactions are controllable, then the simulation of
interactions in quadratic fermionic and bosonic systems is
possible. However, for spins this is still an open problem.

Measurement.—After obtaining |y (7)) = Uly(0)) via the
unitary evolution, we need to perform the final measurement
in order to extract the desired information. In general, for
characterizing a quantum state, quantum state tomography
(QST) (D’Ariano, Paris, and Sacchi, 2003) can be used.
However, QST requires resources that grow exponentially
with the size of the system, making it inefficient for large
quantum systems. In order to avoid this problem, the direct
estimation of certain physical quantities such as correlation
functions or spectra of operators is more desirable than taking
the long route through QST. A detailed discussion is given by
Ortiz et al. (2001) and Somma et al. (2002).

We consider two examples. The first one refers to mea-
surements of quantities that can be written in the form (UTV),
where U and V are unitary operators. The measurement circuit
is shown in Fig. 5. One ancilla qubit that is initially in the state
|+) = (|0) + [1))/+/2 is needed. The desired quantity, i.e.,
(U7V), is given by the expectation value (264 ) of the ancilla
at the end of the simulation (here 26 = 6§ + ic}). The
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second example pertains to measuring the spectrum of a
Hermitian operator Q. Again, one ancilla qubit that is initially
in the state |[+) = (|0) 4 [1))/+/2 is needed, and the desired
spectrum is obtained by analyzing the time dependence of
(20%). The measurement circuit is shown in Fig. 5.

B. Analog quantum simulation

“..there is to be an exact simulation, that the
computer will do exactly the same as nature”
(Feynman, 1982).

Another approach to simulating quantum systems by
quantum mechanical means is analog quantum simulation
(AQS), in which one quantum system mimics (emulates)
another (Wei and Xue, 1997; Manousakis, 2002; Fischer and
Schiitzhold, 2004; Porras and Cirac, 2004b; Smirnov et al.,
2007; Zagoskin, Savel’ev, and Nori, 2007). The Hamiltonian
of the system to be simulated H, is directly mapped onto the
Hamiltonian of the simulator H ,,,, which can be controlled at
least to some extent:

HsyseHsinr (10)

This can be done if there is a mapping between the system and
the simulator (Somaroo et al., 1999). Then |¢p(0)) can be
mapped to |w(0)) via an operator f (Jy(0)) = f|@(0))), and
|w(¢)) can be mapped back to |p(t)) via f~!. For
Hamiltonians H,, = fH gy, f~!'. Note that the simulator
may only partly reproduce the dynamics of the system. The
choice of the mapping depends on what needs to be simulated
and on the capabilities of the simulator. In AQS one is usually
emulating an effective many-body model of the simulated
system. A controllable “toy model” of the system is used to
reproduce the property of interest, e.g., the dynamics or
ground state.

An important advantage of AQS is that it could be useful
even in the presence of errors, up to a certain tolerance level.
For example, one is sometimes interested in knowing whether
a certain set of physical conditions leads to a given quantum
phase transition. Even without having the full quantitative
details, a qualitative answer can be quite valuable in this
context. If the quantum simulator suffers from uncertainties in
the control parameters, the phase transition under study could
still be observed, hence providing the answer to the question
of interest.

Finding the mapping in an AQS might, at first glance, look
simpler than obtaining the most efficient gate decomposition
for a given Hamiltonian in DQS. Sometimes the mapping is
indeed straightforward, but this is not always the case, and
quite often clever mappings have to be devised, sometimes
involving additional externally applied fields or ancillary
systems to mediate various interactions.

We now look at two examples of mappings between
quantum systems and the corresponding simulators. The first
is the Hamiltonian describing a gas of interacting bosonic
atoms in a periodic potential
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Hsim:_‘] &T&J+28lﬁ,+%U2ﬁl(ﬁl—l), (11)
1} 1 1

where @/ and &; correspond to the bosonic creation and
annihilation operators of atoms on the ith lattice site,
n; = &,sz ; 1s the atomic number operator counting the number
of atoms on the ith lattice site, and &; denotes the energy offset
of the ith lattice site due to an external confining potential. The
coefficient J quantifies the hopping strength between lattice
sites, and U quantifies the interaction strength between atoms
occupying the same lattice site. This Hamiltonian has a similar
form to the Bose-Hubbard Hamiltonian

Hyy ==Y _bjb; +%U2ﬁi(fz,~ — 1) =p) A (12)
i.j i

i

where J and U are the same as above, and u is the chemical
potential. The analog simulation of the Bose-Hubbard model
using atoms in optical lattices is therefore straightforward.
However, in other situations one must rewrite H,, in order to
obtain the mapping H <> H ;. For example, in the case of an
array of Josephson junctions as in van Oudenaarden and
Mooij (1996) the system is described by the quantum phase
model, which can be connected to the Bose-Hubbard model
via a mapping where the field operators a; are reformulated in
terms of the amplitude and phase of the superconducting order
parameter at different points in the circuit.

The second example of a mapping between a quantum
system and its simulator is the trapped-ion simulation of the
Dirac equation (Lamata et al., 2007; Gerritsma et al., 2010).
The Dirac equation in (141) dimensions for a spin-1/2
particle with rest mass m is

. Op .

lha = Hpop = (cpo, + mc?o,)p, (13)
where c is the speed of light, p is the momentum operator, and
o, and o, are the Pauli matrices. The Hamiltonian of a single
trapped ion interacting with a bichromatic light field can be
written as

H; = 2nAQo,p + hQo, (14)

where 7 is the Lamb-Dicke parameter, A is the spatial size of
the ground-state wave function, and Q is controlled via the
intensity of the bichromatic light field. With the identifications
¢ = 2n@A and mc? = hQ, H; has the same form as H,. With
this analogy, effects such as Zitterbewegung and the Klein
paradox can be studied in a nonrelativistic quantum system
(Gerritsma et al., 2010, 2011).

In the following sections the Hamiltonians of several
proposed quantum simulators and those of the systems to
be simulated are discussed in more detail and the relation in
Eq. (10) will become clearer for each particular case.

The initial-state preparation and measurement in AQS have
not been thoroughly discussed in the literature. Because the
system and simulator are presumed to be very similar, it is
expected that the preparation of the initial state can occur
naturally in processes mimicking the natural relaxation of the
simulated system to an equilibrium state. Moreover, directly
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measuring some physical quantity of the simulator would
yield information about its analog in the simulated system. In
this sense, AQS has the additional advantage that physical
quantities can be measured directly, without the need for
computational manipulation of measurement results as in
DQS. Nevertheless, both the initial-state preparation and
measurement process in AQS will need to be studied in more
detail as AQS becomes a widely used research tool.

C. Quantum-information-inspired algorithms for the
classical simulation of quantum systems

In an interesting recent development, classical numerical
algorithms for the simulation of quantum many-body systems
came out of research on quantum information theory.
[For detailed studies on the subject, see, e.g., Verstraete
and Cirac (2004), Verstracte, Porras, and Cirac (2004), and
Vidal (2008)].

As discussed in Secs. II and IV, fully characterizing a
quantum system requires an exponentially large number of
parameters. It would be useful if many-particle states could be
represented in such a way that some physical quantities could
be classically calculated in a more efficient way. In order to
achieve this goal, some techniques from quantum information
theory have been used in recently developed algorithms. The
first steps in this direction were taken by Verstraete and Cirac
(2004) and Verstraete, Porras, and Cirac (2004) and thereafter
a significant effort has been made to explore this idea. Using
matrix product states and projected entangled-pair states one
can simulate more efficiently infinite-size quantum lattice
systems in one and two dimensions. This new class of
algorithms makes it possible to simulate spin systems for
longer times and to study physical phenomena which would
have been inaccessible with previous methods. Moreover,
these methods can be combined with Monte Carlo techniques.
For more details we direct the interested reader to the two
reviews (Verstracte, Murg, and Cirac, 2008; Cirac and
Verstraete, 2009, and references therein). Another widely
used stochastic method is the Metropolis algorithm. Its
quantum version allows for direct sampling from the eigen-
states of the Hamiltonian, overcoming in this way the sign
problem (Temme et al., 2011).

V. RESOURCE ESTIMATION AND FAULT TOLERANCE
A. Resource estimation

Using a quantum simulator instead of a classical computer
does not necessarily provide an efficient solution to the
problem of simulating quantum systems. This is because it
is not always easy to prepare the initial state, evolve it, and
measure it with polynomial resources. The amount of physical
resources (i.e., number of qubits, number of operations,
number of steps, etc.) needed for the quantum simulation
in the case of an N-body problem strongly depends on the type
of problem and the particularities of the simulator. In this
section, we review some results on the estimation of the
required resources for some particular cases.

How many particles or qubits are needed to realize useful
quantum simulations? The answer to this question depends on
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FIG. 6. Resource requirements for the quantum simulation of the
dynamics of N particles interacting through a pairwise potential,
maintaining a relatively small error level. The chemical symbols
are a guide to show what type of problem can be simulated with a
given computation size. The vertical dashed lines represent the
current limit of numericallyexact quantum simulations on
classical computers on a grid. From Kassal et al., 2008.

the type of simulation one wants to implement. As a general
rule of thumb, it is sometimes said that in order to outperform
classical computers quantum simulators require somewhere
between 40 and 100 qubits (Buluta and Nori, 2009). However,
there are some interesting applications that could be realized
with fewer qubits. For instance, with ten or fewer qubits one
could perform proof-of-principle simulations, including the
simulation of frustrated spin systems (Porras and Cirac,
2006b; Kim et al., 2010; Ma et al., 2011; 2012), quantum
chaos (Howell and Yeaze, 1999; Weinstein et al., 2002), some
simple chemical reactions (Smirnov et al., 2007), Dirac
particles (Bermudez, Martin-Delgado, and Solano, 2007,
Lamata et al., 2007; Gerritsma et al., 2010), the Unruh effect
(Alsing, Dowling, and Milburn, 2005; Nation et al., 2012), or
anyons (Lu er al., 2009; You et al., 2010). (Note that these
few-qubit simulations can in principle be readily performed on
a present-day classical computer.) With a few tens of
qubits, one could perform frustrated-spin simulations or
molecular-energy calculations at the limits of present-day
supercomputers.

There have been rather extensive studies on the resource
estimation for DQS. The estimation of the requirements for
simulating N particles interacting through a pairwise potential
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has been performed by Kassal et al. (2008). The results are
reproduced in Fig. 6. A discrete-variable representation of the
wave function in an n qubit basis is used. Furthermore, a
number m of ancilla qubits is required to represent the desired
range of potential values with a certain precision, four of
which give a reasonably high accuracy for the Coulomb
potential. This gives a total of n(3N — 6) + 4m qubits. The
Coulomb potential can be evaluated in O(N*m?) steps, so
chemical dynamics could be simulated on a quantum com-
puter in O(N?m?) steps, which is exponentially faster than
known classical algorithms. However, from the data in Fig. 6,
it follows that in order to outperform current classical
computers at least 100 qubits and over 200000 quantum
gates per step would be required.

Compared with the studies on scaling with the system size,
less attention has been paid in the literature to the scaling of
required resources with desired accuracy. For example, if one
considers a case where increasing the accuracy of the answer
(i.e., the desired number of bits in the final answer) leads to an
exponential increase in the number of quantum gates, it is not
obvious that the quantum simulation can be called efficient.
Indeed, it was pointed out by Brown, Clark, and Chuang
(20006) that several current algorithms for quantum simulation
exhibit poor scaling as a function of desired accuracy, even if
they seem efficient based on the scaling with system size. One
should also note here that, at first sight, one might think that
making the step size smaller for the Trotter decomposition in
DQS does not affect the total run time of the algorithm,
because the gates can be implemented more quickly for small
time steps. However, there is typically an overhead that is
proportional to the number of gates that need to be imple-
mented, and this number can increase rapidly with decreasing
step size. The precision requirement in a given quantum
simulation is therefore an important question for purposes of
resource estimation.

Recently, the resource requirements (total number of
physical qubits and computation time) for computing the
ground state energy of the one-dimensional quantum trans-
verse Ising model with N spin-1/2 particles, as functions of
the system size and the numerical precision, were investigated
by C.R. Clark et al. (2009). The quantum circuit was
decomposed into fault-tolerant operations, and the total
number of qubits and the total number of steps were estimated
as functions of the desired precision. They found that the
computation time grows exponentially with desired precision.
In order to obtain polynomial scaling, new quantum simu-
lation algorithms are needed. Alternatively, systems where the
phase estimation algorithm can be implemented without the
Trotter formula (C. R. Clark et al., 2009) could be used.

A related recent study (You, Geller, and Stancil, 2013)
compared the resource requirements for two alternatives that
could be used in fault-tolerant DQS: topologically protected
surface codes and circuit models with quantum error correc-
tion. By analyzing the Ising model as a representative
example, and using parameters that are relevant to present-
day experiments, they concluded that surface codes are
superior for quantum simulation.

Another example of resource estimation for a DQS imple-
mentation is given by Lanyon ef al. (2010). The results are
reproduced in Fig. 7, where the error in the ground state
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FIG. 7 (color online). Trotter error analysis and gate count for a
simulation of the hydrogen molecule using a DQS algorithm.
(a) The calculated ground state energy of the hydrogen molecule
as a function of the time step duration Az. The horizontal lines
indicate the bounds for +107*E,, precision. (b) Total number of
gates for a single construction of the approximate unitary as a
function of Az. From Lanyon et al., 2010.

energy as a function of the time step duration At is shown. The
ground state energies were obtained via direct diagonalization
on a classical computer. A precision of +107*E,, where
E;, ~27.21 eV, is achieved for about 522 gates. The gate
count includes both one- and two-qubit operations and the
estimate does not take into consideration error correction for
the qubits. An extended discussion of the resource estimation
for such molecular energy simulations is provided by
Whitfield, Biamonte, and Aspuru-Guzik (2011).

There has not been much work in the literature on
resource estimation for AQS. However, it is sometimes
stated that AQS has less stringent resource requirements in
order to produce useful results that are intractable for
classical computational methods. This statement does not
necessarily imply that few particles are sufficient in order to
obtain results in AQS, but rather that large numbers of
particles could be collectively manipulated in AQS using a
small number of controls. For example, Greiner et al.
(2002) trapped hundreds of thousands of atoms using three
laser beams.
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B. Decoherence and errors

Although quantum simulators are affected by the inter-
actions with the environment in the same way as quantum
computers, it is generally believed that the effects of
decoherence are less dramatic. This is most clearly seen with
AQS, where only limited precision (or just a qualitative
answer) might be required. As a result, a few imperfections
in an ensemble of particles performing AQS might not affect
the overall behavior of the ensemble, such that the AQS might
still produce useful results even in the presence of these
imperfections. Moreover, it has been suggested that the
decoherence of the simulator might be useful (Lloyd, 1996)
as it could serve as a rough way of modeling the decoherence
of the simulated system. A simple argument could go as
follows: if the noise level that is naturally present in the
simulator is lower than the noise level in the simulated system,
then it is rather straightforward to artificially supplement noise
in the simulator so that the combined noise in the simulator
faithfully mimics that present in the simulated system. This
idea has in fact been demonstrated recently in experiment (Li
et al., 2013). More sophisticated methods of dealing with
noise are also possible. Tseng er al. (2000) demonstrated,
through calculations and a nuclear magnetic resonance
(NMR) experiment, that in the quantum simulation of open
systems it is possible to exploit the natural decoherence of the
simulator by varying the choice of mapping between the
simulated system and the simulator. In principle, one could
characterize how decoherence affects a simulation. Then, by
an appropriate choice of the mapping between the system and
simulator, one can take advantage of the natural symmetries in
order to modify the effective decoherence of the simulator. It
was also suggested (Tseng et al., 2000) that it should be
possible to simplify decoherence effects in a simulation within
certain subspaces. Decoherence may also provide a useful tool
for extracting information about a critical system (spectral
structure or critical point of its quantum phase transition) as
suggested by Cucchietti, Fernandez-Vidal, and Paz (2007).
This idea was investigated in an NMR setting (Zhang et al.,
2009) with the simulation of the Ising Hamiltonian.

Unfortunately, there are certain limitations and the inclusion
of the simulator’s decoherence in the simulation must be
carefully considered. The interaction between the system and
the environment could be qualitatively different from that
between the simulator and its environment (Brown, 2007).
For example, when simulating spin Hamiltonians with degen-
erate ground states using trapped ions, spontaneous emission of
the ions drives the system to states outside the Hilbert space used
in the system-simulator mapping (Brown, 2007). This shows
that one should be cautious when trying to include decoherence
in the simulation. First, one needs to understand how
decoherence will affect the simulation and, whenever possible,
find clever mappings in order to take advantage of the uncon-
trollable properties of the simulator. Second, one needs to pay
attention to the way the system and simulator are described. It is
therefore necessary to pay more attention to the role of errors in
AQS than has been done so far in the literature. Note that the
simulation of open quantum systems does not necessarily
require the inclusion of the decoherence of the simulator
(Schneider and Milburn, 2001; Piilo and Maniscalco, 2006).
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The ideal situation therefore remains that uncontrollable errors
should be minimized as much as possible.

Brown, Clark, and Chuang (2006) conducted a detailed
study of the algorithm for finding the low-lying spectrum of a
pairing Hamiltonian in an NMR implementation. Such sim-
ulations were found to be sensitive to systematic errors in the
applied Hamiltonian and fault-tolerant implementations
to be inefficient with respect to precision in the current
Trotter approximation methods. Other studies have shown
that for simulating the Schrodinger equation the minimization
of amplitude errors would be required (Strini, 2002).
Montangero (2004) found the two-qubit entanglement in a
simulation of a dynamically localized system to be exponen-
tially sensitive both to small changes of the Hamiltonian and
to the locations of the chosen qubits. This sensitivity is due to
the natural ordering introduced on the qubits by the coding of
the simulated system. More recently, there have been studies
(Diir, Bremne, and Briegel, 2008) on the effect of noise
(timing errors in pairwise interactions and noisy pairwise
interactions described by master equations of Lindblad form)
in two-body interactions and local control operations used for
the simulation of many-body interaction Hamiltonians.

Further problems may arise for each physical implementa-
tion. In this context, the specific limitations of each system
should be considered in more detail. So far there are few
studies investigating how the simulator’s imperfections affect
the quantum simulation [e.g., in trapped ions (Porras and
Cirac, 2004b, 2006b; Buluta et al., 2008)].

Recently, the reliability, complexity, and efficiency of
analog quantum simulations have been considered in more
detail than in past studies (Hauke et al, 2012). Reliability
refers to the need to ensure that the results of the simulation
faithfully reflect the simulated system. Cross validation over a
number of different physical systems could be used, and in
this way the particular imperfections of each implementation
could be ruled out as possible sources of error. However, this
approach is limited as implementations in different systems
are not always available. The quantum simulation results can
also be validated against analytical and numerical predictions,
but this is possible only for small systems. Complexity and/or
efficiency refers to the requirement that the quantum simulator
is able to solve problems that cannot be solved on a classical
computer in polynomial time (i.e., the simulator is more
efficient than a classical computer). Note that in the case of the
quantum simulation of experimentally challenging problems
(see Sec. VII) this is not a necessary requirement. Disorder,
noise, and other imperfections might affect the reliability of
the quantum simulation (Hauke et al., 2012). This issue is
illustrated in the case of a disordered quantum spin chain
where strong disorder introduces large errors.

VI. PHYSICAL REALIZATIONS

The physical implementation of a quantum simulator
requires a controllable quantum mechanical system. Any
physical system that can be used as a quantum computer
would also be a universal machine for DQS. Possible routes
and experimental progress toward building a quantum com-
puter have been thoroughly discussed in the last decade (Chen
et al., 2007; Schleich and Walther, 2008; Stolze and Suter,
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FIG. 8 (color online). Different systems that could implement a
specialized quantum simulator for the study of problems in
condensed-matter physics. Examples of such analog quantum
simulators include atoms, ions, photons, nuclear and electronic
spins, as well as superconducting circuits. These systems could
be designed such that they form one- or two-dimensional arrays
of qubits that can be manipulated in different manners. They can
be thought of as toy models of the magnified lattice structure of a
“solid,” with a magnification factor of a few orders of magnitude.

2008; Ladd et al., 2010; Buluta, Ashhab, and Nori, 2011 and
references therein). However, a quantum system that is not a
potential quantum computer could still implement AQS. For
instance, the propagation of sound waves in a two-component
Bose-Einstein condensate (BEC) was proposed for the study
of cosmic inflation (Fischer and Schiitzhold, 2004), and a
rotating Fermi gas could be used to understand nuclear
physics phenomena (Georgescu et al, 2011). We will not
discuss the physical realization of such highly specialized
quantum simulators, but focus on a more widely studied
design of a quantum simulator: quantum simulators for
various models in condensed-matter physics. For many
problems in this class, an array of qubits plus their controls
(see Fig. 8) would make an ideal quantum simulator because it
can be thought of as the simplified, magnified lattice structure
of a “solid” that can be manipulated in a number of different
ways in order to test various models. Each qubit resides in its
own potential energy well and is used to encode a spin-1/2
particle. The array is configurable in the sense that its
dimensionality and geometry can be changed. Such an array
could be realized, for example, with atoms in optical lattices
(Greiner and Folling, 2008), atoms in arrays of cavities
(Greentree et al., 2006; Hartmann, Brandao, and Plenio,
2006; Angelakis, Santos, and Bose, 2007; Brandao,
Hartmann, and Plenio, 2007), ions either in microtrap arrays
(Chiaverini and Lybarger, 2008; R.J. Clark et al., 2009;
Schmied, Wesenberg, and Leibfried, 2009) or in two-
dimensional crystals (Porras and Cirac, 2006b), electrons in
arrays of quantum dots (Manousakis, 2002; Byrnes et al.,
2007, 2008), and so on. The desired evolution of the system
would be induced by the simulator’s control fields. This can
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either directly realize the desired Hamiltonian (AQS) or
reconstruct it out of elementary one- and two-qubit gates
(DQS). The control can be applied individually or to the entire
array. In Secs. VI.LA-VLF, we look at different physical
systems and describe how the array and controls can be
realized experimentally. For a recent review of the state-of-
the-art capabilities of the physical systems that we consider
here, see Ladd et al. (2010) and Buluta, Ashhab, and
Nori (2011).

A. Atoms and ions

Neutral atoms in optical lattices are very well suited for
mimicking solid-state systems. Indeed, optical lattices provide
the highly desirable properties of being easily tunable and
essentially defect free. The optical potentials can be adjusted
to allow the change of the geometry and dimensionality of the
lattice [e.g., triangular lattice (Struck et al., 2011), kagome
lattice (Liu er al., 2010), etc.]. Interestingly, the optical
potential can be tuned in sifu rather easily via the intensity,
frequency, or phase of the applied lasers.

Since the first experiment on the simulation of the quantum
phase transition from a superfluid to a Mott insulator using a
cold atomic gas in an optical lattice (Greiner ef al., 2002),
there has been increasing interest in the study of condensed-
matter physics with atoms in optical lattices. A theoretical
review (Lewenstein ef al., 2007) discusses in detail atoms in
optical lattices as potential quantum simulators, providing
various examples of quantum systems that could be simulated.
Other reviews (Bloch, Dalibard, and Zwerger, 2008; Bloch,
Dalibard, and Nascimbene, 2012) describe recent experimen-
tal progress.

Atoms in optical lattices are flexible systems with several
controllable parameters: tunneling strength, on-site, nearest-
neighbor, long-range and multiparticle interactions, nonuni-
form potentials, and coupling between internal quantum
states. Furthermore, there are both bosonic and fermionic
elements that can be used for quantum simulation with atoms
in optical lattices. A rather general type of Hubbard
Hamiltonian that can be realized in these systems is

H = Hhop + Hinteraction + Hpot + Hinternal’ (15)

where Hy,, describes the tunneling of atoms from one lattice
site to another, Hiperaction 18 the interaction part, H,,, combines
all the effects of the nonuniform potentials felt by the atoms,
and Hpema describes coherent on-site transitions between the
internal levels of the atoms.

A quantum simulation of the Mott insulator-superfluid
phase transition in the Hubbard model can be realized by
adjusting the depth of the optical lattice, which mainly
modifies the tunneling strength and to a lesser extent modifies
the on-site interaction strength, or by controlling the on-site
interactions via Feschbach resonances (Lewenstein er al.,
2007) (see Sec. VILLA.1 on the simulation of the
Hubbard model).

By tuning interatomic interactions using Feshbach reso-
nances, it is possible to investigate the crossover from a
Bardeen-Cooper-Schrieffer (BCS) state of weakly attractive
fermions to a BEC of tightly bound fermion pairs (Regal,
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Greiner, and Jin, 2004; Zwierlein et al., 2005). The continuous
tunability of the interaction strength also allowed access to the
so-called unitarity regime (O’Hara er al, 2002), where the
interaction strength is comparable to the Fermi energy,
meaning that there is a single energy scale in the problem.
This regime was previously inaccessible and served as one
more example demonstrating the power of atoms as quantum
simulators.

Using laser-assisted tunneling and lattice tilting, Simon
et al. (2011) achieved the simulation of an antiferromagneti-
cally coupled spin chain in an external magnetic field. In this
simulation the occupation of lattice sites was mapped onto the
spin states of a quantum magnet. In particular, a pair of
neighboring lattice sites sharing a single particle is mapped
onto a (static) spin-1/2 particle in the quantum magnet. It
should also be possible to utilize the intrinsic spins of atoms in
optical lattices for this purpose. However, no such simulations
have been performed to date.

Another recently emerging direction for quantum simula-
tion using atomic gases is the simulation of artificial gauge
fields (Dalibard er al., 2011). At a basic level, an overall
rotation of the trapping potential can be used to simulate a
magnetic field (for the orbital degree of freedom). More
intricate techniques that rely on additional lasers have
been devised in the past few years for the simulation of
various types of gauge fields, allowing the observation of
spin-orbit coupling in a BEC (Lin, Jiménez-Garcia, and
Spielman, 2011).

Currently, addressing individual atoms in optical lattices is
difficult because the separation between neighboring lattice
sites is comparable to the best achievable focusing widths of
laser beams (both typically being 0.5-0.8 um), but recent
progress suggests that there may be methods for overcoming
this difficulty (Nelson, Li, and Weiss, 2007; Bakr et al., 2009,
2010; Wiirtz et al., 2009; Sherson et al., 2010; Fuhrmanek
et al., 2011; Gibbons et al., 2011; Weitenberg et al., 2011).

Atoms could also be used for DQS. One possible method
for implementing conditional quantum operations on atoms in
optical lattices (Jané ef al., 2003) is schematically illustrated in
Fig. 9. Two optical lattice potentials are applied to the atomic
ensembles, one for each of the two internal atomic states
(which represent the qubit states). The interaction between
neighboring atoms is realized by displacing one of the lattices
with respect to the other [Fig. 9(a)]. With a sufficiently large
relative displacement of the two lattices, interactions between
more distant atoms can be achieved. Moreover, thanks to their
weak interaction with the environment, neutral atoms have
long decay times of the order of seconds.

Alternative systems that can be used for quantum simu-
lation include Rydberg atoms (Weimer et al., 2010) and polar
molecules (Lewenstein, 2006; Micheli, Brennen, and Zoller,
2006). In the case of Rydberg atoms in optical lattices or
magnetic traps the lattice spacing is ~um or higher, allowing
single-site addressability. Furthermore, dipole-dipole and
van der Waals interactions offer a means for implementing
effective spin-spin interactions.

With polar molecules (Pupillo er al., 2009) (see Fig. 10)
microwave excitations, dipole-dipole interactions, and spin-
rotation couplings provide a universal toolbox for effective
spin models. The advantage of using polar molecules is that
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FIG. 9 (color online). Manipulation of atoms and ions as proposed
by Jané etal. (2003). (a) Neutral atoms in a double optical potential:
the interaction between neighboring atoms is realized by displacing
one of the lattices with respect to the other. Shaded circles denote
the state |1) and white ones denote the state |0). (b) Ions in
independent trapping potentials: the interaction between two
neighboring ions is achieved by conditionally displacing the
corresponding ions with a state-dependent force. Shaded circles
denote the state |1) and white ones denote the state |0). Adapted
from Jané er al., 2003.

their large electric dipole moments produce strong dipole-
dipole interactions that can be manipulated relatively easily
via external dc and ac microwave fields. This control can be
used to study strongly correlated systems. Furthermore,
extended Hubbard models (Ortner et al., 2009), quantum
phase transitions (Capogrosso-Sansone et al., 2010), and the
supersolid phase in a triangular lattice (Pollet e al., 2010)
could also be simulated with these systems.

Tons can be trapped by electric (or magnetic) fields, laser
cooled and manipulated with high precision for realizing
quantum simulation (Schitz er al., 2004, 2007; Blatt and
Wineland, 2008; Johanning, Varon, and Wunderlich, 2009). In
fact, one of the earliest theoretical studies on the physical
implementation of quantum simulation dealt with trapped ions
(Wineland et al., 1998). Both the internal energy levels and the
vibrational modes of the trapped ions can be exploited for
encoding quantum information. In contrast with neutral
atoms, which interact weakly with each other, ions, being
charged, interact rather strongly via Coulomb repulsion. This
facilitates the implementation of two-qubit gates and the
control of the qubit positions and motion. Ion qubits also
have long coherence times of the order of seconds, and
sequences of high-fidelity quantum gates have been demon-
strated in experiment (Hanneke er al., 2009; Lanyon
et al., 2011).
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FIG. 10 (color online). Polar molecules trapped in a plane by an
optical potential created by two counterpropagating laser beams
with wave vectors indicated by the middle arrows. The dipoles
are aligned perpendicular to the plane by a dc electric field,
indicated by the left arrow. The right arrow represents the ac
microwave field. From Pupillo et al., 2009.

The quantum states of trapped ions are typically manipu-
lated by either resonantly driving transitions between different
internal states of the ions or resonantly driving sideband
transitions involving the internal states and the vibrational
states of the ions in the external trapping potential. For
example, the Hamiltonian describing the coupling between
the internal and vibrational modes due to the laser driving at
the red-sideband frequency can be written in the following
form:

H = ihnQ[exp(ip)o.a — exp(—ip)o_a'], (16)

where Q is the Rabi frequency of the transition between the
internal states, ¢, and o_ are the two-level atom transition
operators, 7 is the Lamb-Dicke parameter (which is assumed
to be small here), «” and a are the creation and annihilation
operators of the vibrational mode, and ¢ is the laser phase.
Using this Hamiltonian, as well as those corresponding to
blue-sideband driving and to resonant driving of the ionic
internal states, a variety of effective Hamiltonians for AQS
or quantum gates for DQS can be realized. The high-fidelity
one-, two-, and even three-qubit (Toffoli) gates implemented
with trapped ions have resulted in the most advanced
implementations of DQS to date (Barreiro et al., 2011;
Lanyon et al., 2011). Analog quantum simulations of frus-
trated spin systems (Kim ez al, 2010) and of relativistic
single-particle motion (Gerritsma et al., 2011) have also been
recently demonstrated.

Ions have generally been trapped using linear harmonic
traps in quantum-simulation experiments to date. It is pos-
sible, however, to obtain different arrangements of many ions
in anharmonic one-dimensional traps [long ion strings (Lin
et al., 2009)], two-dimensional traps [planar crystals (Porras
and Cirac, 2006b; Buluta ef al., 2008; Biercuk et al., 2009) or
arrays of microtraps (Chiaverini and Lybarger, 2008; R.J.
Clark et al, 2009; Schmied, Wesenberg, and Leibfried,
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FIG. 11 (color online). Arrangement of electrodes for the
realization of a bilayer honeycomb lattice. The microtrapping
regions are shown as ellipsoids, while the locations of unwanted
spurious microtraps are indicated with small spheres. From
Schmied, Wesenberg, and Leibfried, 2009.

2009; Schmied et al., 2010; Lau and James, 2012)] or three-
dimensional traps. It would also be possible to combine
trapped ions with optical lattices as suggested by Schmied
et al. (2008). With optimized electrode structures, various
microtrap arrays where ions are arranged in different lattice
configurations (see Fig. 11) can be constructed (Schmied,
Wesenberg, and Leibfried, 2009, 2011). In fact a two-
dimensional ion array was recently used to implement a
quantum simulation of a spin system with hundreds of ions
(Britton et al., 2012).

There are also alternative ways to generate two-qubit
interactions between ions. One such possibility is to use a
state-dependent displacement, which can be implemented by
applying optical dipole forces (Blatt and Wineland, 2008).
This method is particularly useful for ions trapped in different
harmonic potentials (e.g., in arrays of microtraps), but in most
of the experiments done to date it has been realized with ions
in the same potential. In Fig. 9(b), the manipulation of ions in
a one-dimensional array of microtraps is depicted schemati-
cally. Two-qubit interactions are usually realized with optical
forces, but a method for laserless simulation (avoiding the
problem of scattering) with ions in arrays of microtraps has
been proposed by Chiaverini and Lybarger (2008) and
recently demonstrated by Ospelkaus et al. (2011) and
Timoney et al. (2011).

Atoms in cavity arrays (see Fig. 12) (Greentree et al., 2006;
Hartmann, Brandao, and Plenio, 2006; Angelakis, Santos,
and Bose, 2007; Brandao, Hartmann, and Plenio, 2007) could
also be used as quantum simulators [see also Kimble (2008)].
This system provides an alternative way of simulating the
Bose-Hubbard model and quantum phase transitions as well
as spin models (Kay and Angelakis, 2008).

In the absence of atoms, the cavity array is described by the
following Hamiltonian:

- 1 .
= wcz (a}ea,g + 5) + chaZ(a}eaR/ +Hece), (A7)
R

R.R'
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FIG. 12. A one-dimensional array of cavities with atoms trapped
in the cavities. Photons can hop between the different cavities
because of the overlap between the light modes in adjacent
cavities. The atoms can be driven using externally applied lasers.
The atoms and cavities form hybrid excitations (polaritons) that
can hop between the different cavities and that effectively interact
with each other. The polariton-polariton interaction strength can,
for example, be tuned via the atom-cavity detuning. From
Hartmann, Brandao, and Plenio, 2006.

where a} creates a photon in the cavity at site R, @, is the

frequency of the relevant cavity mode, and « is the intercavity
coupling coefficient (Hartmann, Brandao, and Plenio, 2000).
One now introduces an atom or ensemble of atoms in each
cavity, and these atoms can be driven by external lasers. The
atoms trapped in a cavity together with the photons in
the same cavity form hybrid excitations called polaritons.
The nonlinearity introduced by the atoms results in effective
polariton-polariton interactions, which can be utilized for
simulating, for example, the Mott-insulator-superfluid phase
transition.

Arrays of cavities in an arbitrary geometry may be realized
with photonic band gap cavities and toroidal or spherical
microcavities coupled via tapered optical fibers (Greentree
et al., 2006). However, these might be quite challenging to
realize experimentally.

A recent proposal suggested measurement and feedback
control as tools for realizing quantum simulation in atom-
cavity systems (Vollbrecht and Cirac, 2009), while others
considered the possibility of using atom-cavity systems for
simulating the high-spin Heisenberg model (Cho, Angelakis,
and Bose, 2008a) and the fractional quantum Hall effect (Cho,
Angelakis, and Bose, 2008b). Arrays of cavities could also be
used to study the quantum analog of Fabry-Pérot interferom-
eters as suggested by Zhou, Dong et al. (2008).

B. Nuclear and electronic spins

Nuclear spins manipulated by means of NMR have been
among the first experimental systems to implement small
quantum algorithms and quantum simulation (Peng et al.,
2009; Peng and Suter, 2010; Li et al., 2011; Zhang et al.,
2012). Nuclear spin qubits have long coherence times (> 1 s),
and high-fidelity quantum gates and the coherent control of up
to 12 qubits have been demonstrated.

In the presence of a strong magnetic field pointing along the
z axis, the general form of the NMR Hamiltonian is

H= —fzyBZIZ + Y JGEE, (18)

i>j
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where y is the gyromagnetic ratio, B is the magnetic field, 7 is
the angular momentum operator, and J;; are the spin-spin
coupling coefficients (Chen et al., 2007). The different
transitions between pairs of energy levels generally have
distinct resonance frequencies, allowing the addressing of the
individual transitions based on their frequencies. Using rf
pulses, various one-, two- and possibly multiqubit gates can
be implemented. The field of NMR benefits from very well-
developed control techniques. However, it is not very flexible
and its main disadvantage is the lack of scalability, one of the
main reasons being the spectral crowding that occurs as the
number of energy levels increases exponentially with increas-
ing number of spins. Although in solid-state NMR the
scalability drawback may be overcome to some extent,
individual addressing and measurement would still be
impractical. Nevertheless, nuclear spins provide a very good
test bed for various small simulation problems and allow the
implementation of both DQS and AQS. Furthermore, a recent
proposal suggested that nuclear spins attached to a diamond
surface and addressed through nitrogen-vacancy (NV) cen-
ters could offer an attractive route toward a large-scale
quantum simulator for strongly correlated systems (Cai
et al., 2013).

Another system that could be used for quantum simulation
is electron spins in semiconductor quantum dots (Hanson and
Awschalom, 2008). Quantum dots are semiconductor sys-
tems in which the excitations are confined in a very small
region in one or two dimensions. If the region is roughly the
same size as the wavelength of the charge carrier, the energy
levels are quantized and the quantum dot becomes very
similar to a real atom (and can therefore be referred to as an
“artificial atom”). Moreover, quantum dots allow flexible
control over the confinement potential and they can also be
excited optically. Furthermore, quantum dots with large
tunnel coupling can act as “artificial molecules.” These
features make electron spins in quantum dots particularly
attractive for quantum simulation.

Quantum dots can be defined at fabrication or by applying
bias voltages using electrodes placed above a two-dimensional
electron gas. They can be designed to have certain character-
istics and assembled in large arrays. The manipulation
and readout can be done both electrically and optically.

FIG. 13. An array of quantum dots realized by a metallic gate
with an array of two different size holes placed on top of an
Al,Ga,_, As/GaAs heterostructure. A negative gate voltage is
applied to this gate in order to create a potential for the two-
dimensional electron gas that is otherwise free to move at
the Al,Ga,_, As/GaAs interface. This was one of the early
theoretical proposals for AQS. From Manousakis, 2002.
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State-of-the-art quantum-dot qubits now have long decay
times of > 1 s (Amasha et al., 2008).

Arrays of quantum dots could be realized using two-
dimensional mesh gates (Manousakis, 2002; Byrnes et al.,
2008) (see Fig. 13). Alternatively, Byrnes et al. (2007)
proposed that interfering acoustic waves could be used to
form an analog of optical lattices in a two-dimensional
electron gas, but this latter approach has the disadvantage
of heating and complicated engineering. By adjusting the
mesh-gate design and voltage, various lattice geometries could
be created. Electron spins in quantum dots may provide an
advantage over atoms in optical lattices due to the very low
temperatures (relative to the Fermi temperature) that can be
reached and the natural long-range Coulomb interaction. In a
recent experiment, the predictions of the two-dimensional
Mott-Hubbard model were tested for electrons in an artificial
honeycomb lattice (Singha er al., 2011).

The Hamiltonian for an array of quantum dots is given by

H = Zﬂng(t)Bj(t) S+ Z Ji(0)S; - S (19)
=1

1<j<k<n

where the first term is the energy due to an applied magnetic
field B;, and the second term is the exchange interaction
energy, which is a result of virtual tunneling between the
quantum dots. Here S; is the spin of the electric charge quanta
of the jth dot (Chen ez al., 2007). The interactions between the
qubits can be engineered by adjusting the gate voltages
together with a careful choice of the mesh hole sizes and
doping (Manousakis, 2002).

C. Superconducting circuits

Superconducting circuits (You and Nori, 2005, 2011;
Clarke and Wilhelm, 2008) can also be used as quantum
simulators (see Fig. 14). Quantum information can be encoded
in different ways: in the number of superconducting electrons
on a small island, in the direction of a current around a loop, or
in oscillatory states of the circuit. The circuit can be manip-
ulated by applied voltages and currents (including both dc and
microwave-frequency ac signals) and measured with high

FIG. 14 (color online). Schematic diagram of an array of
superconducting flux qubits (Ashhab er al., 2008). The T-shaped
circuits are used to couple the flux qubits, while the ¢-shaped
circuits are used to read out the states of the qubits. The gaps
represent tunnel junctions.
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accuracy using integrated on-chip instruments. Although
macroscopic in size, these circuits can display quantum
behavior and can be seen as artificial atoms. The advantage
over real atoms is that superconducting circuits can be
designed and constructed to tailor their characteristic frequen-
cies, interaction strengths, and so on. The frequencies can also
be tuned in sifu by adjusting an external parameter (typically
an external magnetic field), and the coupling energy between
two qubits can be turned on and off at will. Furthermore,
superconducting circuits can be coupled to “cavities,” which
are actually electrical resonators (and the “photons” are, for
the most part, electron-density oscillations). This setup is very
useful for the study of electric-circuit analogs of cavity
quantum electrodynamics (circuit QED) (You and Nori,
2005, 2011; Schoelkopf and Girvin, 2008).

State-of-the-art superconducting qubits have coherence
times exceeding 100 us (i.e., decoherence rates below
10 kHz), which is quite high considering that other energy
scales in the circuit are typically in the range 10 MHz—
10 GHz. Individual control and measurement have been
demonstrated (Mariantoni et al., 2011). Furthermore high-
fidelity one-, two-, and three-qubit quantum gates have
been demonstrated. With this level of control, DQS could
be implemented in a superconducting circuit in the near
future.

The Hamiltonian for N charge (flux) qubits biased at their
symmetry points (which is optimal for quantum coherence)
coupled capacitively (inductively) is

N A, ]
H=— 1 50— ;Jija;o;, (20)
- i

where A; is the level splitting and J;; is the strength of the
coupling between qubits i and j. It should be noted, however,
that superconducting circuits have more than two energy
levels, and these additional levels could also be utilized.
Indeed, a recent experiment demonstrated AQS of a spin
larger than 1/2 using this approach (Neeley et al., 2009).

As for scalability, circuits containing 512 qubits have been
fabricated (Harris er al, 2010; Harris, 2012), although
quantum coherence was not tested on these circuits in the
same way that coherence is commonly tested in other experi-
ments using small numbers of qubits. Furthermore, more than
200 superconducting resonators were recently fabricated on a
single chip (Houck, Tiireci, and Koch, 2012). If qubits are
integrated into such a circuit, it could realize the proposal of
atom-cavity arrays (or Jaynes-Cummings lattices), performed
with artificial atoms and cavities (see Fig. 15). It has also been
proposed that artificial gauge fields could be simulated with
such circuits (Koch et al., 2010). A related study proposed an
approach to universal quantum computation and simulation
using the single-excitation subspace of an array of coupled
superconducting qubits (Geller et al., 2012). Although unscal-
able, this approach may still enable a universal quantum
simulation speedup relative to a present-day classical
computer.

The fact that superconducting circuits can be produced in
large numbers and “wired” together on a chip offers a rather
straightforward way of realizing various lattice geometries.
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FIG. 15 (color online). A possible design for implementing
the Jaynes-Cummings lattice using superconducting qubits.
The colored strips are superconducting resonators and the
dots are superconducting qubits. An effective particle-
particle interaction is created by the qubit-cavity inter-
actions. From Koch et al., 2010.

Examples include the Kitaev model on a honeycomb lattice
(You et al., 2010), networks for simulating Anderson and
Kondo models (Garcia-Ripoll, Solano, and Martin-Delgado,
2008), highly connected networks (Tsomokos, Ashhab, and
Nori, 2008), and fractals (Tsokomos, Ashhab, and
Nori, 2010).

D. Photons

Photons can carry quantum information over long distan-
ces, hardly being affected by noise or decoherence. They
naturally possess the ability to encode qubit states, e.g., in the
polarization of the photon, and one-qubit gates can be easily
realized with linear optical components. Although the diffi-
culty in implementing two-qubit gates is a serious drawback
for photonic systems in the context of quantum computation,
there have been some notable achievements for quantum
simulation using photons.

Photons have been used to calculate the possible fractional
statistics of anyons using a six-photon graph state (Lu et al.,
2009), to calculate the energy spectrum of the hydrogen
molecule to 20 bits of precision (Lanyon et al., 2010), and to
simulate frustrated spin systems (Ma et al., 2011). It has also
been proposed that photons propagating or trapped inside
materials doped with atoms that have suitable energy-level
structures could be used for the simulation of Luttinger liquids
(Angelakis et al., 2011) and relativistic field theories
(Angelakis et al., 2013; Angelakis and Noh, 2013).

Recently, it was shown that the propagation of photons in a
network of beam splitters is in general a computationally
difficult task for classical computers even for a few tens of
photons (Aaronson and Arkhipov, 2011), and corresponding
experiments with up to four photons were performed (Broome
et al., 2013; Crespi et al., 2013; Spring et al., 2013; Tillmann
et al., 2013). However, with limited flexibility and scalability,
it remains to be seen how far photon-based quantum simu-
lation can go.

E. Other systems

One of the systems that are being considered as candidate
platforms for implementing quantum computation is NV
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centers in diamond (Ladd ef al., 2010; Buluta, Ashhab, and
Nori, 2011). Unlike other systems studied in the context of
quantum computation, however, NV centers in diamond
have not received much attention as potential quantum
simulators, which might be due to difficulties in coupling
the NV centers to each other and future scalability.
Nevertheless, there have been recent studies attempting
to alleviate these difficulties (Weimer, Yao, and Lukin,
2013).

Another system that could be used for the quantum
simulation of condensed-matter physics is electrons trapped
on the surface of liquid helium (Mostame and Schiitzhold,
2008). This setup could be used to simulate the Ising model.
In principle it could be scaled up, but the control would be
very difficult. A related system that was proposed recently
to implement DQS is a chain of molecular nanomagnets
controlled by external magnetic fields (Santini et al.,

A rather unconventional example of a quantum simulator is a
two-component BEC in which the propagation of sound waves
could simulate some aspects of cosmic inflation (Fischer and
Schiitzhold, 2004). Although such a quantum simulator would
be limited to a narrow class of problems, it provides an
alternative possibility for the simulation of such systems.

F. Current state of the art

The above discussion of the physical systems that could
implement quantum simulation is summarized in Table I,
which lists the strengths and weaknesses of each potential
quantum simulator, and in Fig. 16.

Currently only with neutral atoms in an optical lattice is it
possible to perform quantum simulations with more than a few
particles, and these systems can at present be considered the
most advanced platform for AQS. Although individual control

2011). and readout is not yet available, recent progress in this
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FIG. 16 (color online). One- or two-dimensional arrays of qubits and controls can be used to simulate various models in condensed-
matter physics. Examples of such analog quantum simulators include (a) atoms in optical lattices (Jaksch and Zoller, 2005), (b) one-
dimensional or (c) two-dimensional arrays of cavities (Greentree et al., 2006; Hartmann, Brandao, and Plenio, 2006); (d) ions in linear
chains, (e) two-dimensional arrays of planar traps (Chiaverini and Lybarger, 2008), or (f) two-dimensional Coulomb crystals (Porras
and Cirac, 2006b); (g) electrons in quantum dot arrays created by a mesh gate (Manousakis, 2002; Byrnes et al., 2008), (h) in arrays
of superconducting circuits, or (i) trapped on the surface of liquid helium (Mostame and Schiitzhold, 2008). The average distance
between the atoms in optical lattices is less than 1 gm. Cavity arrays based on photonic band gap cavities would also have submicron
intersite separations. As for the inter-ion distances in ion trap arrays, they are about 10~15 ym and about the same for two-dimensional
Coulomb crystals. In arrays of quantum dots, the spacing between dots is about 0.1 ym. In superconducting circuits, the distance
between qubits is typically a few microns. In the case of electrons on helium the distance between neighboring sites would be about
1 um. These interqubit distances (from 0.1 to 10 ym) are to be compared with the far smaller average interatomic distances in solids,
which are < 1 nm. The systems shown above realize a one- or two-dimensional array of qubits which can be manipulated in different
manners. The larger distances between qubits make quantum simulators more controllable and easier to measure. Therefore, they can be
thought of as models of the magnified lattice structure of a solid, with a magnification factor of 2 to 4 orders of magnitude. From Buluta
and Nori, 2009.
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direction has been made and alternative approaches using
Rydberg atoms or polar molecules are now being pursued.
Meanwhile, recent experiments with trapped ions have dem-
onstrated exotic quantum simulations beyond condensed-
matter physics [e.g., Dirac particles (Lamata et al., 2007;
Gerritsma et al., 2010) or the Klein paradox (Casanova et al.,
2010; Gerritsma et al., 2011)] and superconducting circuits
provide a way of studying intriguing quantum phenomena
such as the dynamical Casimir effect (Johansson et al., 2010;
Wilson et al., 2011; Lahteenmiki er al., 2013).

With the current experimental state-of-the-art techniques,
the most advanced DQS has been realized with trapped ions
(Lanyon et al., 2011). In these experiments, simulations of
various spin models with up to six spins have been demon-
strated, with one experiment requiring sequences of more than
100 quantum gates. Since no error correction was used, the
fidelity of the DQS implementation was somewhat lower than
for the AQS implementation in the same system (Friedenauer
et al., 2008). With error correction and improved control of
laser intensity fluctuations, quantum simulations with
> 10 qubits and hundreds of high-fidelity gates seem possible
in the coming years. Moreover, the DQS approach allows the
simulation of complex spin-spin interactions and could
potentially be combined with AQS techniques.

VII. APPLICATIONS

Quantum simulators will find numerous applications in
diverse areas of physics and chemistry (Lanyon et al., 2010),
and possibly even biology (Ghosh, Smirnov, and Nori, 2009,
2011a, 2011b). Quantum simulation leads to new results that
cannot be otherwise simulated and also allows the testing of
various theoretical models. In general, with a quantum
simulator one could address problems that are either intrac-
table on classical computers or experimentally challenging.
Moreover, being quantum systems themselves, quantum
simulators are able to provide more insight into quantum
phenomena than classical simulators (e.g., the effects of
decoherence and the transition from quantum to classical).
In this section we discuss how different problems can be
studied using the quantum simulators described in Sec. VI.
While some problems are classically intractable (e.g.,
Hubbard models, spin frustration and disorder, lattice gauge
theories, and quantum chemistry calculations), others can be
treated classically (e.g., James-Cummings Hamiltonian and
interferometry) but are discussed here as benchmarks for the
progress of quantum simulation.

A. Condensed-matter physics

The difficulty in solving quantum many-body problems is
reflected in the open questions in condensed-matter physics.
Among the best-known challenges in this field are under-
standing high-T'. superconductivity and disordered and frus-
trated systems. In this section we discuss the quantum
simulation of these problems.

1. Hubbard model

The Hubbard model is the simplest model of interacting
particles on a lattice. However, for large numbers of particles
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in more than one dimension, the model is difficult to treat
using classical computers.

As discussed in Sec. VILA, an AQS of the Bose-Hubbard
model using atoms in optical lattices was proposed by Jaksch
et al. (1998) and implemented by Greiner et al. (2002). Recent
experiments on the subject include the realization of a Tonks-
Girardeau gas in one dimension (Paredes ef al., 2004) and the
investigation of atoms trapped in a graphenelike lattice
(Uehlinger et al., 2013). There have also been proposals to
simulate this model with polar molecules (Ortner et al., 2009),
trapped ions (Porras and Cirac, 2004a, 2006a; Deng, Porras,
and Cirac, 2008) or atoms in arrays of coupled cavities
(Brandao, Hartmann, and Plenio, 2007; Zhou, Dong et al.,
2008; Zhou, Gong et al., 2008; Liao et al., 2010). The
simulation of the Fermi-Hubbard model in quantum-dot
arrays was proposed by Byrmes et al. (2007, 2008). The
simulation of the Hubbard model with attractive interactions
using atoms in optical lattices was discussed by Ho, Cazalilla,
and Giamarchi (2009). Proposals for the AQS of the related
Holstein model have also been put forward. These include
simulations using polar molecules (Herrera and Krems, 2011;
Herrera et al., 2013), ions (Stojanovi¢ et al., 2012), and
superconducting circuits (Mei et al., 2013).

The simulation of the Hubbard model has also been
considered in the context of DQS. Somma er al. (2002)
showed how to obtain the energy spectrum of the Fermi-
Hubbard Hamiltonian:

_ T T
Hy =— Z UX(a(i,j);aa(iJrlzi)iU + a(i+1,j);oa(i,j);a)
(i.j):e

T f
+ ty(a(i.j);aa(i~f+l)§” + a(i,j+1);na(i~j);(7)]

+ U nGjan @1
(i.7)

where 7, and ¢, are the hopping matrix elements allowing
fermions to move on the lattice. The first terms describe
the kinetic energy, and the last term (U) is the on-site
repulsion potential energy. They explicitly gave the mapping
between the operators of the Hubbard model and the DQS;
the initialization, evolution, and measurement steps are
described in detail. Note that the mapping between the
fermionic operators and the Pauli matrices employs the
Jordan-Wigner transformation. A possible implementation
of DQS for the Holstein model was analyzed by
Mezzacapo et al. (2012).

2. Spin models

Spin systems are typically described by Hamiltonians of the
form

N
Hyyz = Z[Jxaffffﬂ + 0707, + 10707, ] (22)
p)

As mentioned in Sec. IV.A, along with the Hubbard
Hamiltonian spin Hamiltonians can be simulated on a
DQS. It is also worth noting that in certain limits the
Hubbard model reduces to spin models.
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FIG. 17 (color online). Schematic diagram of a proposal for the
simulation of anisotropic spin models using polar molecules
trapped in an optical lattice: a two-dimensional square lattice with
nearest-neighbor orientation-dependent Ising interactions. The
effective interactions between the spins S| and S, of the molecules
in their rovibrational ground states are generated with a microwave
field E(t) inducing dipole-dipole interactions between the mole-
cules with dipole moments D and D,, respectively. From Micheli,
Brennen, and Zoller, 2006.

The DQS implementation of various spin Hamiltonians
with atoms in optical lattices or trapped ions was discussed by
Jané et al. (2003). A recent trapped-ion experiment demon-
strated the DQS of different spin Hamiltonians using sequen-
ces of elementary quantum gates (Lanyon et al., 2011).

The AQS of spin models is also possible. For instance, with
trapped ions, an AQS for the Ising [Eq. (23)], XY [Eq. (22)
with J, = 0], or XYZ [Eq. (22)] interactions can be realized
using the collective vibrational modes (Porras and Cirac,
2004b). These interactions can be switched and tuned by
lasers and by the choice of trapping conditions. This direction
was pursued further by Deng, Porras, and Cirac (2005), Porras
and Cirac (2005a, 2005b), Porras et al. (2008), Bermudez,
Porras, and Martin-Delgado (2009), Lin, Monroe, and Duan
(2011), and Korenblit ez al. (2012) and put into practice in the
experiments of Friedenauer et al. (2008), Edwards er al.
(2010), Kim et al. (2010, 2011), Islam er al. (2011), and
Britton et al. (2012). Earlier Milburn (1999) showed that the
conditional displacement of the vibrational mode of trapped
ions can be used to simulate nonlinear collective and inter-
acting spin systems. Furthermore, spin chains and ladders can
be investigated with atoms in optical lattices (Garcia-Ripoll,
Martin-Delgado, and Cirac, 2004), and a scheme to realize the
anisotropic XXZ [Eq. (22) with J, = J, # J_] and isotropic
XXX [Eq. (22) with J,=J, =J,] Heisenberg spin
Hamiltonians in an arbitrary array of coupled cavities was
proposed by Cho, Angelakis, and Bose (2008a). Micheli,
Brennen, and Zoller (2006) discussed the possibility of
engineering Hamiltonians of spin lattice models with polar
molecules stored in optical lattices (see Fig. 17). The spins are
represented by single electrons of heteronuclear molecules.
Using a combination of microwave excitation, dipole-dipole
interactions, and spin-rotation couplings enables the realiza-
tion of effective two-spin interactions with designable range,
spatial anisotropy, and coupling strength.
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FIG. 18 (color online). Illustration of the experiment of Neeley
et al. (2009), in which the states of a superconducting
circuit were used to emulate a particle with spin s, up to
s = 3/2. For simulating a spin s, 2s + 1 quantum states of the
circuit are used. For example, in (d) four of the circuit’s quantum
states are mapped onto the four quantum states of a spin-3/2
particle, while a fifth state was used in the experiment as a
reference state for phase measurement. By applying carefully
tuned microwave-frequency drive signals, the circuit can simulate
the interaction between the spin and a magnetic field with
arbitrary strength and direction. An analogy with a classical
system (a soccer game), shown on the left side, can also be used
to give a simple explanation of the redistribution of the pop-
ulation among the different energy levels in terms of players
passing a ball among each other, with the goalkeeper serving as
the anchor. From Nori, 2009.

Recently, Tsokomos, Ashhab, and Nori (2010) proposed
the simulation of spin and Hubbard models in higher or fractal
dimensions with superconducting qubits and resonators. The
ability to access arbitrary dimensions is made possible by the
flexible connectivity, which derives from the flexibility in
designing tunable couplers between superconducting qubits
and resonators. Spin systems with s > 1/2 can also be
naturally realized using superconducting circuits, because
these circuits generally have more than two quantum states
that can be employed in the simulation. Neeley ez al. (2009)
demonstrated the emulation of the dynamics of single spins
with principal quantum numbers s = 1/2, 1, and 3/2 (see
Fig. 18). The antiferromagnetic Heisenberg model with long-
range interactions can be realized with solid-state NMR
(Roumpos, Master, and Yamamoto, 2007). Itinerant ferro-
magnetism can be studied in a two-component Fermi gas
(Jo et al., 2009).

3. Quantum phase transitions

Having introduced the Hubbard model and spin models, we
now discuss quantum phase transitions, especially in these
models. Quantum phase transitions occur when one varies a
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Quantum magnet

Examples of analog quantum simulators of quantum phase transitions using (a) ultracold neutral atoms and

(b) trapped ions. (a) The quantum phase transition from a superfluid to a Mott insulator phase realized by Greiner et al. (2002) using
rubidium atoms trapped in an optical lattice. The ratio between the tunneling energy and the on-site interaction energy was controlled in
Greiner et al. (2002) by adjusting the lattice potential depth, such that the quantum phase transition was observed. There are other
alternative ways of simulating this quantum phase transition with arrays of cavities (Hartmann, Brandao, and Plenio, 2006), or arrays of
Josephson junctions (van Oudenaarden and Mooij, 1996). (b) Magnetic quantum phase transition simulated by Friedenauer ef al. (2008)
using trapped calcium ions. The interactions between individual spins and an external magnetic field were simulated by coupling the
internal levels (representing the spin-1/2 states) with a resonant rf field, while the spin-spin interactions were simulated using a state-
dependent optical dipole force implemented by a walking wave. From Buluta and Nori, 2009.

physical parameter at absolute zero temperature, when all
thermal fluctuations have ceased. The transition describes an
abrupt change in the ground state of the many-body system
governed by its quantum fluctuations. Quantum phase tran-
sitions are an interesting and fundamental subject, but are
difficult to investigate both by classical simulation and via
experimental methods. Analog quantum simulators can help
in understanding this purely quantum phenomenon, and the
first steps in this direction have already been explored.

For example, the quantum phase transition from a super-
fluid to a Mott insulator phase, predicted by Fisher et al.
(1989), was first observed in 2002 (Greiner et al., 2002) in an
ensemble of atoms trapped in an optical lattice. The physical
model is described by the Bose-Hubbard Hamiltonian given in
Eq. (12). The phase transition is perhaps easiest to understand
in the case of a unit filling factor, i.e., when there are as many
particles as lattice sites. Deep in the superfluid phase, when
J > U, delocalization minimizes the kinetic energy and the
system is said to be in the weakly interacting regime [the
ground state being approximately given by (32;57)V|0), i.e.,
all the particles are in the single-particle ground state]. When
U J, the energy is minimized when the particles are
distributed evenly among the lattice sites and the ground
state is approximately given by [[;5}|0). This state is some-
times called strongly correlated, and it corresponds to the Mott
phase. By adjusting the lattice potential depth, the ratio
between the tunneling energy J and the on-site interaction
energy U can be controlled and brought to the point where the
transition between the Mott insulator phase and the superfluid
phase is induced. Then an abrupt change in the ground state of
the system is observed (Greiner ef al., 2002). A schematic
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diagram of this quantum phase transition is illustrated in
Fig. 19(a).

In quantum magnets, the transition from a paramagnet to an
antiferromagnet was emulated using two trapped calcium ions
by Friedenauer et al. (2008). The system is described by the
quantum Ising model. The Hamiltonian for a chain (with two
or more spins) is given by

Hy==B.) o+ Jioi0}, @3

i<j

where B, is the magnetic field strength and J;; are the spin-
spin coupling coefficients. The first term, denoting the
interactions of individual spins with an external magnetic
field, is simulated by coupling the internal levels (representing
the two spin-1/2 states) with a resonant rf field. The spin-spin
interaction in the second term is simulated by a state-
dependent optical dipole force, implemented by a walking
wave formed by two perpendicular laser beams. When the
strength of the spin-spin interaction is increased adiabatically
(increasing J while keeping B, constant), the system under-
goes a transition from paramagnetic (| —)| =) ---| =)) to
ferromagnetic (|4)[{)---[}) + 1)) ---|1)) or antiferro-
magnetic order ([)[1)--- [1)[1) + 1)) ---[1)[4)). This
is illustrated in Fig. 19(b). The same technique for realizing
the spin-spin interaction, namely, the state-dependent force,
can be applied for many ions in a string or ion array. Further
experimental investigations in this direction have been per-
formed by Kim et al. (2010) and Islam ef al. (2011). A recent
experiment demonstrated the quantum simulation of antiferro-
magnetic
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spin chains using neutral atoms in an optical lattice (Simon
et al., 2011).

4. Disordered and frustrated systems

Disordered systems appear in many difficult problems in
condensed-matter physics such as transport, conductivity, spin
glasses, and some models of high-T'. superconductivity. They
can exhibit characteristic phenomena that are not present in
perfectly ordered systems. For example, the wave functions of
particles can be localized in disordered media in spite of the
presence of hopping terms in the Hamiltonian. This phe-
nomenon can occur at the single-particle level by coherent
backscattering from random impurities. Since the theoretical
treatment of these problems is particularly challenging,
several proposals for quantum simulation have been put
forward.

The Fano-Anderson Hamiltonian can be studied using
DQS. This idea was pursued theoretically and experimentally
(with liquid-state NMR) by Negrevergne et al. (2005). The
fermionic Fano-Anderson model in one dimension consists of
an n-site ring with an impurity in the center. The fermions can
hop between nearest-neighbor sites on the ring or between a
site on the ring and the impurity (with matrix element V/+/n
for the latter). The Fano-Anderson Hamiltonian can be written
as follows:

n—1
i =S euchen + b+ Vb + b, 2
=0
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FIG. 20 (color online). Spin configurations in a triangular lattice
and their experimental signatures, simulated using the motional
degrees of freedom of atoms trapped in an optical lattice, averaged
over several experimental runs. The coupling parameters can be
tuned to ferromagnetic (solid lines) or antiferromagnetic values
(dashed lines), and these determine the resulting spin configura-
tion. From Struck et al., 2011.
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where the fermionic operators cz[ (ck,) and b" (b) create
(destroy) a spinless fermion in the conduction mode k; and in
the impurity, respectively. Note that in principle the
Hamiltonian in Eq. (24) can be diagonalized exactly.
Nevertheless, the experiment serves as a benchmark for the
experimental progress of quantum simulators. Recently, the
decoherence-induced localization of the size of spin clusters
was investigated in an NMR quantum simulator (Alvarez and
Suter, 2010). Thermal states of frustrated spin systems were
also simulated recently using NMR (Zhang et al., 2012).

As for AQS, optical lattices have been used to experimen-
tally realize a disordered system that may lead to the
observation of a Bose glass phase (Fallani er al., 2007). In
arecent experiment, the motional degrees of freedom of atoms
trapped in an optical lattice were used to simulate ferromag-
netic, antiferromagnetic, and frustrated classical spin configu-
rations (Struck er al., 2011). A rich phase diagram with
different types of phase transitions was observed. Figure 20
shows examples of spin configurations in a triangular lattice
and their experimental signatures. Furthermore, theoretical
and experimental studies have investigated possible routes
toward Anderson-like localization of atomic BECs in disor-
dered potentials (Schulte er al., 2005; Billy et al., 2008; Roati
etal.,2008). A review focused on the simulation of disordered
quantum systems with quantum gases has been given by
Bouyer (2010). A chain of trapped ions could also be used to
explore the physics of disordered quantum systems
(Bermudez, Martin-Delgado, and Porras, 2010). Garcia-
Ripoll, Solano, and Martin-Delgado (2008) proposed a map-
ping between superconducting circuits and the Hamiltonians
describing magnetic impurities in conduction bands
(Anderson and Kondo models). A recent experiment on a
driven superconducting qubit (Gustavsson, Bylander, and
Oliver, 2013), along with the appropriate mapping, exhibited
an analog of universal conductance fluctuations, which are
typically studied in the context of particle propagation in two-
dimensional disordered media.

Geometric frustration refers to the situation in which the
geometric properties of the crystal lattice forbid the simulta-
neous minimization of all the interaction energies acting in a
given region (see Fig. 21). Well-known examples include the
antiferromagnetic Ising model on a triangular lattice or the
antiferromagnetic Heisenberg model on a kagome lattice.
Frustrated antiferromagnets are materials whose quantum
Monte Carlo simulation suffers from a severe sign problem.
There have been studies on the AQS of frustrated spin models
with trapped ions (Porras and Cirac, 2006b; Kim et al., 2010;
Bermudez et al., 2011; Ivanov and Schmidt-Kaler, 2011),
NMR (Peng et al., 2009), photons (Ma et al., 2011), and
atoms in optical lattices [see Lewenstein et al. (2007) and
references therein, Becker er al. (2010), Liu et al. (2010),
and Struck et al. (2011)].

5. Spin glasses

Spin glasses typically occur when the interactions between
spins are ferromagnetic for some bonds and antiferromagnetic
for others, so the spin orientation cannot be uniform in space
even at low temperatures, and the spin orientation can become
random and almost frozen in time. Spin glasses can be
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FIG. 21. An example of the simulation of the simplest case of
spin frustration: (a) three antiferromagnetically coupled spins. This
simulation was realized with (b) three ytterbium ions in a one-
dimensional trap. J, is the nearest-neighbor coupling and J, is the
next-nearest-neighbor coupling. (¢) The expected form of the Ising
interactions J; and J,, controlled through the laser detuning f,
used to generate an optical spin-dependent force, is depicted. The
three oscillation modes shown at the top of (c) are used as markers,
as the parameter j is defined relative to their frequencies. From
Kim et al., 2010.

efficiently simulated using DQS. Lidar and Biham (1997) and
Lidar (2004) developed an algorithm for the construction of
the Gibbs distribution of configurations in the Ising model.
The algorithm can be applied to any dimension, to the class of
spin-glass Ising models with a finite portion of frustrated
plaquettes, to diluted Ising models, and to models with a
magnetic field.

An analog approach to the simulation of spin glasses using
magnetic impurities embedded in inert matrices, such as solid
helium, was proposed by Lemeshko et al. (2013). A proposal
for the analog simulation of the Lipkin-Meshkov-Glick
model and complex quantum systems, such as Sherrington-
Kirkpatrick spin glasses, using superconducting qubits in
circuit QED was given by Tsomokos, Ashhab, and Nori
(2008). Spin glasses could also be studied using Fermi-Bose
mixtures in inhomogeneous and random optical lattices
as suggested by Sanpera er al. (2004) and Ahufinger
et al. (2005).

6. Superconductivity

The high-temperature superconductivity of compounds
containing copper-oxide planes is still a puzzle that might
be solved using large-scale simulations. The CuO, plane in a
high-T'. superconductor (Orenstein and Millis, 2000) can be
simulated in an analog manner by an array of electrostatically
defined quantum dots, as suggested by Manousakis (2002) in
one of the early proposals for AQS. Moreover, the analog
simulation of the #-J model was proposed by Yamaguchi and
Yamamoto (2002). The #-J model describes strongly corre-
lated fermions on a lattice and it is used in various attempts to
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understand high-T'. superconductivity. Here ¢ represents the
size of the kinetic energy of a hole disrupting an antiferro-
magnet with spin-spin interaction energy J.

The study of BCS pairing in superconductors could be done
using DQS. The general BCS pairing Hamiltonian has the
following form:

N N
€ t
Hyes =)= (nfy+nln) + 3 Visehelme e (25)
m=1

m, =1

where the fermionic c}, (c,,) are creation (annihilation)
operators, |m|=1,2,...,N, denotes all relevant quantum
numbers, the number operator n, = ¢ ¢, and the matrix
element V, = (m,—m|V|l,—l). A polynomial-time algo-
rithm to model this BCS Hamiltonian was proposed by
Wu, Byrd, and Lidar (2002) and Wang and Yang (2006)
and a two-qubit version of the algorithm was experimentally
realized using NMR (Yang et al., 2006).

In another direction related to the quantum simulation of
superconductivity, several groups have observed signatures of
the crossover between a BCS and a BEC superfluid as the
strength of attractive interactions between fermionic particles
is varied [see, e.g., Regal, Greiner, and Jin (2004), Zwierlein
et al. (2005), and Lewenstein et al. (2007), and references
therein].

7. Metamaterials

The behavior of tunable metamaterials (regular structures
obtained from the periodic arrangement of mesoscopic build-
ing blocks) in the quantum regime can be seen as a quantum
simulation of materials composed of regular atomic structures
(Bliokh et al., 2008; Rakhmanov et al., 2008, 2010). One
example of a quantum metamaterial is an infinite chain of
identical qubits inside a resonator. Such a system offers new
ways of controlling the propagation of electromagnetic fields,
which are not available to standard materials.

8. Topological order

Anyons are two-dimensional particles whose quantum
statistics are neither bosonic nor fermionic. Anyons have
been used to describe two-dimensional systems such as sheets
of graphene or the quantum Hall effect. Moreover, they have
been proposed as media for implementing topological quan-
tum computation (Kitaev, 2003). The fractional statistics of
anyons in the Kitaev model (Kitaev, 2003) involving four-
body interactions can be studied using AQS with cold atoms
in optical lattices or alternatively using DQS (Han,
Raussendorf, and Duan, 2007). The latter approach has been
experimentally realized with linear optics (Lu et al., 2009).
The Hamiltonian

Hy=-Y A,—> B, (26)
v r

is the sum of mutually commuting stabilizers A, = [ [,c,0} and
B, = [[,ep0i> where v runs over the vertices and p over the
plaquettes (i.e., the small squares defined by four neighboring

vertices) in a square lattice and the products involve the qubits
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FIG. 22 (color online). Schematic diagram of the basic building
block of a Kitaev lattice, consisting of four superconducting
charge qubits (labeled 1 to 4): (i) Qubits 1 and 2 are inductively
coupled via a mutual inductance M; (ii) qubits 1 and 3 are
coupled via an LC oscillator; and (iii) qubits 1 and 4 are
capacitively coupled via a mutual capacitance C,,. Inset: These
three types of interqubit couplings are denoted as X, Y, and Z
bonds. From You et al., 2010.

surrounding the vertices or plaquettes (note that in this setup the
qubits are placed at the centers of lines connecting neighboring
vertices). In optical lattices the creation and manipulation of
Abelian and non-Abelian anyons in topological lattice models
can be realized using ancilla particles (Aguado et al., 2008).
Furthermore, it is possible to construct a Kitaev honeycomb
lattice with superconducting circuits (You et al., 2010) (see
Fig. 22). Topological models have also been investigated by
Freedman, Kitaev, and Wang (2002), Micheli, Brennen, and
Zoller (2006), Brennen, Aguado, and Cirac (2009), Stanescu
et al. (2009), Xue (2011), and Kitagawa (2012). The imple-
mentation of these proposals can also contribute to the
development of topological quantum computation.

B. High-energy physics

Another area for the application of quantum simulation that
is already showing promising developments is high-energy
physics. The study of relativistic quantum systems such as
gauge fields or Dirac fermions with quantum simulators was
first suggested by Boghosian and Taylor (1998b).

More recently, a mapping between the dynamics of the
2 4 1 Dirac oscillator and the Jaynes-Cummings model (in
particular, in connection with trapped-ion experiments) was
proposed by Bermudez, Martin-Delgado, and Solano (2007).
Such mappings would allow the study of relativistic quantum
mechanics described by the Dirac equation in a nonrelativistic
quantum system. A method for simulating the Dirac equation
in 3 + 1 dimensions for a free spin-1,/2 particle using a single
trapped ion was proposed by Lamata et al. (2007). This
simulation offers the possibility of studying effects such as
Zitterbewegung and the Klein paradox. Zitterbewegung refers
to the rapid oscillatory motion of a free particle obeying the
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Dirac equation. Zitterbewegung has never been observed in its
original form with free relativistic particles, but it has been
simulated with a trapped ion (Gerritsma et al, 2010).
A recent paper extended this work to the study of
Zitterbewegung in a magnetic field (Rusin and Zawadzki,
2010) [see also K. Wang et al. (2010)]. The Klein paradox
refers to the situation in relativistic quantum mechanics where
a potential barrier of the order of the electron mass becomes
nearly transparent for the electron. A quantum simulation of
this phenomenon was recently implemented with trapped ions
(Gerritsma et al., 2011). A proposal for a simulation using
graphene was put forward by Katsnelson, Novoselov, and
Geim (2006). Note that it is also possible to classically
simulate the Zitterbewegung of a free Dirac electron in an
optical superlattice (Dreisow et al., 2010). Dirac particles
could also be investigated with neutral-atom quantum simu-
lators (Goldman et al., 2009; Hou, Yang, and Liu, 2009;
Braun, 2010; Cirac, Maraner, and Pachos, 2010; Witthaut,
2010; Casanova et al., 2011).

The simulation of gauge theories can be a very computa-
tionally intensive quantum many-body problem, and there
have been several recent proposals for the quantum simulation
of such theories. For example, several theoretical studies
considered Abelian (Kapit and Mueller, 2011; Banerjee ef al.,
2012; Zohar, Cirac, and Reznik, 2012; Tagliacozzo, Celi,
Zamora, and Lewenstein, 2013) and non-Abelian (Banerjee et
al., 2013; Stannigel et al., 2013; Tagliacozzo, Celi, Orland,
and Lewenstein, 2013; Zohar, Cirac, and Reznik, 2013) lattice
gauge theories using neutral atoms. A review on the subject
was given by Wiese (2013). There have also been related
proposals using trapped ions (Casanova et al., 2011, 2012),
cavity QED systems (Barrett ez al., 2013), and superconduct-
ing circuits (Marcos et al., 2013; Pedernales et al., 2013). A
recent experiment (Ldhteenmiki et al., 2013) used a super-
conducting circuit to simulate a massless Klein-Gordon field
with tunable speed of propagation, which was used to simulate
the generation of photons in the dynamical casimir effect.
Hauke et al. (2013) considered the possible simulation of the
Schwinger model using a chain of trapped ions. The simu-
lation of lattice gauge theories on a DQS was investigated by
Byrnes and Yamamoto (2006). They gave the mapping
between the operators in the lattice gauge Hamiltonian for
the U(1), SU(2), and SU(3) (which is particularly important
for quantum chromodynamics) lattice gauge theories and spin
operators, and they showed that the algorithm is efficient.
Another proposal for the DQS of field theories was given by
Jordan, Lee, and Preskill (2012).

Atoms in optical lattices offer the possibility of realizing the
AQS of ring-exchange models (Biichler et al., 2005; Tewari
et al., 2006). Ring-exchange models describe elementary
excitations in a solid, where, a ring of hard-core bosons
collectively rotate like a ring around a central boson. The ring
exchange Hamiltonian,

HRE = K Z (b{b2b§b4 + b1b3b;b1 —nyny — n3n4),
plaquettes

27)

can be realized using atoms with two internal states: one state
trapped in a square lattice [see Fig. 23(a)] and described by the
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FIG. 23. (a) Proposed setup for the simulation of ring-

exchange models . The bosons (black dots) reside on a square
lattice with the molecules (gray dots) at the centers of the
plaquettes. Adapted from Biichler ez al., 2005. (b) Simulation of
compact U(1) lattice gauge theories. Dipolar bosons reside on
the sites of the kagome lattice (black dots); the hexagonal dual
lattice is the lattice formed by the centers of the corner-sharing
triangles (gray dots). Adapted from Tewari et al., 2006.

simple Bose-Hubbard model, and a second one trapped at the
centers of the plaquettes. In trapped atomic gases a micro-
scopic Hamiltonian can be implemented and its phase diagram
can be studied experimentally via controlling the strength of
the interaction terms (Biichler et al., 2005). Furthermore, with
this system it is possible to simulate a certain class of strong
coupling Hamiltonians, and in doing so, study exotic phases
with strong correlations. By implementing a Hubbard model
with an additional, strong nearest-neighbor interaction on
certain two- or three-dimensional lattices (for example, a two-
dimensional kagome lattice) the simulation of a U(1) lattice
gauge theory would be possible (Tewari er al., 2000) [see
Fig. 23(b)]. Noninteracting relativistic fermionic theories or
topological insulators could also be investigated using these
systems (Mazza et al., 2012).

Semiao and Paternostro (2012) proposed a quantum-circuit
simulation of the state of a nucleon. This simulation could be
implemented using a photonic network. Finally, we also note
the possible simulation of the O(3) nonlinear sigma model
using an array of superconducting and insulating spheres with
electrons trapped in the insulating spheres, as discussed by
Schiitzhold and Mostame (2005).

C. Cosmology

Quantum simulation can also find applications in analog
gravity or cosmology models. For example, acoustic waves in
a two-component BEC can be used to investigate scalar fields
within the curved space-time structure of an expanding
universe (Fischer and Schiitzhold, 2004). The simulation
can be performed by varying the interparticle coupling and/
or expanding the condensate in a temporal ramp. This idea
might be experimentally challenging but it opens up a new
possible way to study cosmology. The study of the analog of
cosmological particle creation with trapped ions was proposed
by Schiitzhold ef al. (2007), and more recently, the analog of
quantum field effects in cosmological space-times was inves-
tigated by Menicucci, Olson, and Milburn (2010). There are
also numerous similarities between the behavior of superfluid
helium and cosmological phenomena, such as processes in the

Rev. Mod. Phys., Vol. 86, No. 1, January—March 2014

early Universe, as discussed in detail by Volovik (2009).
These similarities could be exploited, and a system of liquid
helium could be used for the quantum simulation of problems
in cosmology.

With analog models it is possible to test predicted
phenomena that have not yet been observed in experiment.
Examples include the possible observation of an Unruh-like
effect (i.e., the observation by an accelerating observer of a
thermal flux of particles in vacuum) using the phonon
excitation of trapped ions (Alsing, Dowling, and Milburn,
2005) and the simulation of the Schwinger effect (i.e., the
production of electron-positron pairs from the vacuum under
the action of a strong electric field) with atoms in an optical
lattice (Szpak and Schiitzhold, 2011, 2012). Furthermore,
analogs of Hawking radiation can be investigated with
atoms (Giovanazzi, 2005), ions (Horstmann et al., 2010)
and superconducting circuits (Nation et al., 2009), exciton-
polariton superfluids in semiconductors (Gerace and
Carusotto, 2012), or even with ultrashort pulses of light
in microstructured optical fibers (Philbin et al., 2008) [see
also (Nation er al. (2012)]. Recently it was demonstrated
that Hawking radiation can be measured in a classical
analog system, namely, water surface waves (Weinfurtner
et al., 2011).

D. Atomic physics

There is a deep analogy between natural atoms and the
artificial atoms formed, for example, by electrons in small
superconducting circuits (You and Nori, 2005, 2011). Both
have discrete energy levels and exhibit coherent quantum
oscillations between those levels. But whereas natural atoms
are driven using visible or microwave photons that excite
electrons from one state to another, the artificial atoms in the
circuits are driven by currents, voltages, and microwave
photons. The resulting electric and magnetic fields control
the tunneling of electrons across Josephson junctions. The
effects of those fields on the circuits are the analogs of the
Stark and Zeeman effects in atoms. Differences between
quantum circuits and natural atoms include how strongly
each system couples to its environment (the coupling is weak
for atoms and strong for circuits) and the energy scales of the
two systems. In contrast with naturally occurring atoms,
artificial atoms can be lithographically designed to have
specific characteristics, such as a large dipole moment or
particular transition frequencies. This tunability is an impor-
tant advantage over natural atoms. Superconducting circuits
can also be used for new types of masers, lasers, and single-
photon generators (You et al., 2007). These circuits can
provide analogs of sideband cooling and Sisyphus cooling
(Grajcar et al., 2008; Nori, 2008) (see Fig. 24). Moreover, they
can be used to test Bell inequalities (Ansmann et al., 2009),
produce Schrodinger-cat states, study Landau-Zener-
Stiickelberg interferometry (Shevchenko, Ashhab, and Nori,
2010), and simulate the Einstein-Podolsky-Rosen experiment
(You and Nori, 2005). Superconducting circuits have also
been used to engineer selection rules and thus create combi-
nations of selection rules that are not possible with natural
atoms (Liu et al., 2005; Deppe et al., 2008; Harrabi et al.,
2009; de Groot et al., 2010).
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Qubit energy

Driving current

FIG. 24 (color online). Sisyphus cooling and amplification in a
superconducting circuit (Grajcar et al., 2008; Nori, 2008). The
two energy levels of a superconducting qubit are shown as a
function of the current applied to the circuit. The current in
a nearby superconducting resonator drives the qubit, and a
microwave drive signal is applied to the qubit. The cycle a —
b—c—d on the right side mimics Sisyphus cooling in
atomic physics: the energy of emitted photons is higher than
the energy of photons absorbed from the drive signal, causing a
constant removal of energy from the resonator. In the analogy
with Sisyphus in Greek mythology the current in the resonator
plays the role of Sisyphus and the qubit plays the role of the
rock. Sisyphus is constantly pushing the rock uphill (as can be
seen in steps a and c), and the rock keeps going back to the
bottom of the hill. The cycle e = f — g — h on the left side
represents the opposite scenario, Sisyphus amplification, where
energy is constantly added to the resonator. Adapted from
Nori, 2008.

One of the most important models in atomic physics and
quantum optics is the Jaynes-Cummings Hamiltonian, which
describes the interaction of a single quantized mode of the
electromagnetic field with a two-level atom:

Hic = ihgy(a'o_ — ac), (28)

where g, is the atom-field coupling strength, the operators a'
and a are the bosonic creation and annihilation operators, and
o, and o_ are the atomic raising and lowering operators.

The Jaynes-Cummings Hamiltonian can be realized with
superconducting circuits (You and Nori, 2003, 2005, 2011;
Wallraff et al., 2004; Schoelkopf and Girvin, 2008; Zueco
et al., 2009).

E. Quantum chemistry

Quantum simulators can also have an important contribu-
tion in quantum chemistry (Kassal et al., 2011). For example,
an efficient algorithm for calculating the thermal rate constant
was given by Lidar and Wang (1999). The algorithm involves
the initialization of the DQS to an equal superposition of
position eigenstates, followed by a unitary evolution that
makes use of the quantum Fourier transform and finally, a
sequence of measurements yielding the energy spectrum and
eigenstates. The algorithm runs in polynomial time while any
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exact classical simulation is bound to exhibit exponential
scaling. Another example is the multiconfiguration self-
consistent field wave-function-based quantum algorithm pro-
posed by Wang et al. (2008) for obtaining the energy spectrum
of a molecular system.

Moreover, a quantum computer could be used to simulate
the static and dynamical chemical properties of molecules.
Aspuru-Guzik et al. (2005) showed how to compute molecu-
lar energies using DQS and the required number of qubits was
estimated (see also Fig. 4). The number of qubits scales
linearly with the number of basis functions, and the number of
gates grows polynomially with the number of qubits, so
simulations with a few tens or a hundred qubits would already
outperform classical computers. The simulation of chemical
dynamics is also achievable in polynomial time (Kassal ef al.,
2008). The molecular energies of the hydrogen molecule have
been calculated using a small photonic DQS (Lanyon et al.,
2010). More recently, chemical reaction dynamics have been
investigated using NMR DQS (Lu et al., 2011).

Using AQS it would be possible to simulate chemical
reactions. Smirnov et al. (2007) proposed using the redis-
tribution of electrons between semiconductor quantum dots to
simulate the redistribution of electrons in a chemical reaction.
They showed how a quantum dot with one electron can be
considered an artificial hydrogen atom and a quantum dot
containing four electrons can be viewed as an artificial oxygen
atom. Depending on the tunnel coupling strengths, electron
distribution, and shell structure, the dots can form both ionic-
like and covalent-like bonds. Various reaction regimes and
different reaction products can be obtained by varying the
speed of voltage changes applied to the gates forming the
quantum dots. This promises the modeling of various chemi-
cal reactions (Smirnov et al., 2007). Furthermore, a recent
proposal suggests that chemical reactions can also be
simulated with ultracold atoms in a waveguide (Torrontegui
et al., 2011).

F. Open quantum systems

Simulating the dynamics of open quantum systems is even
more costly than that of closed quantum systems because
solving the Lindblad equation requires quadratically more
resources than solving the Schrodinger equation for the same
physical system. Simulating open quantum systems with
quantum simulators can be done in two ways. First, one
could exploit the natural decoherence of the simulator, as first
suggested by Lloyd (1996) and investigated experimentally by
Tseng et al. (2000) (see also Sec. V.B). Second, it is also
possible to simulate open quantum systems with closed
quantum systems. A simulation of decoherence caused by
classical noise that was artificially added to the control signal
of a superconducting qubit was reported by Li et al. (2013).
Piilo and Maniscalco (2006) theoretically showed that a driven
harmonic oscillator can act as a quantum simulator for the
non-Markovian damped harmonic oscillator. Other studies
considered the Dicke model (Schneider and Milburn, 2001;
Chen, Chen, and Liang, 2007), the open-system dynamics of a
harmonic oscillator coupled to an artificially engineered
reservoir (Liitkenhaus, Cirac, and Zoller, 1998; Maniscalco
et al., 2004), or open quantum systems in thermal equilibrium
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(Terraneo, Georgeot, and Shepelyansky, 2003). Weimer et al.
(2011) discussed an open-system quantum simulator with
Rydberg states of neutral atoms in an optical lattice. General
methods for simulating the Markovian dynamics of open
quantum systems have been investigated by Terhal and
DiVincenzo (2000), Bacon et al. (2001), and Wang,
Ashhab, and Nori (2011). A recent experiment with trapped
ions demonstrated the possibility of engineering open-system
dynamics using the dissipative preparation of entangled states
(Barreiro et al., 2011). Another recent experiment simulated
non-Markovian dynamics using a linear-optics setup (Chiuri
et al., 2012).

G. Quantum chaos

An application of DQS with a few qubits is the study of the
dynamics of simple quantum maps (Schack, 1998; Terraneo,
Georgeot, and Shepelyansky, 2003; Georgeot, 2004; Levi and
Georgeot, 2004). For instance, the quantum baker’s map, a
prototypical example in quantum chaos, has an efficient
realization in terms of quantum gates (Schack, 1998). The
quantum baker’s map has been experimentally realized in
NMR (Weinstein et al., 2002) and with linear optics (Howell
and Yeaze, 1999). Another example is the kicked Harper
model (Levi and Georgeot, 2004). It has been shown that in
some cases the quantum approach to the kicked Harper model
can provide a polynomial gain as compared to classical
algorithms. It should exhibit observable interesting behavior
even with only eight qubits.

H. Nuclear physics

In nuclear physics one must solve an N-body quantum
problem. Even though N is not as large as in condensed-matter
physics (in this case N, the atomic mass number, is smaller
than 300), the calculation of the nuclear force is difficult and
therefore nuclear physics simulations require significant
computing power. Several phenomenological models have
been developed, one of which is the superfluid model of the
atomic nucleus. As suggested by Georgescu et al. (2011), this
model could be simulated using an analog controllable
system: a superfluid gas of fermionic atoms. Given the ease
of rotating atomic clouds, this approach offers the possibility
of studying the response of nuclei to increasing angular
momentum with unprecedented control over the relevant
parameters such as the interaction strength, particle number,
external trapping potential, and rotation frequency. The
reviews by Zinner and Jensen (2008, 2013) detail similarities
between atomic nuclei and cold atomic gases, which could be
utilized for designing quantum simulators of nuclei using
atomic ensembles.

L. Interferometry

Nonlinear interferometers were first investigated in trapped-
ion experiments (Leibfried et al., 2002). This was among the
first experimental realizations of quantum simulation. More
recently, the study of Mach-Zehnder interferometry with an
array of trapped ions was explored by Hu, Feng, and
Lee (2012).
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Boson sampling (Aaronson and Arkhipov, 2011) is another
interferometry problem that is closely related to quantum
simulation. Several recent experiments have demonstrated
boson sampling using photons (Broome et al., 2013; Crespi
et al., 2013; Spring et al., 2013; Tillmann et al., 2013), and
Lau and James (2012) proposed an implementation using
trapped ions.

Superconducting qubits can be used, for example, to perform
Landau-Zener-Stiickelberg  interferometry ~ (Shevchenko,
Ashhab, and Nori, 2010) and Fano and Fabry-Pérot interferom-
etry (Zhou, Dong et al., 2008; Ian, Liu, and Nori, 2010;
Liao et al., 2010). These latter phenomena can be realized using
quasi-one-dimensional open systems where photons are injected
from one side and move toward the opposite side of the device.
Along the way, the photons interact with either one or two qubits
acting as tunable mirrors, controlled by changing the applied
electric and/or magnetic fields on the qubits. These qubits,
operating as tunable mirrors, can change the reflection and
transmission coefficients of photons confined in waveguides.

J. Other applications

Some recent topics in physics research, such as Majorana
fermions (Casanova et al., 2011; You et al., 2011), graphene
(Gibertini et al., 2009) or neutrino oscillations (Noh,
Rodriguez-Lara, and Angelakis, 2012), are now discussed
in the context of quantum simulation.

The possibility of simulating the Schrodinger equation on a
DQS was first discussed in 1996 (Lloyd, 1996), with concrete
algorithms given in 1998 (Boghosian and Taylor, 1998a),
where a quantum lattice-gas model for the many-particle
Schrodinger equation in d dimensions was proposed. More
recently, the single-particle Schrodinger equation was con-
sidered by Benenti and Strini (2008), where it was shown that
six to ten qubits would be sufficient for a simulation of the
single-particle Schrodinger equation.

Another direction of interest is quantum heat engines,
quantum Brownian motion (Hénggi, Marchesoni, and Nori,
2005; Héanggi and Marchesoni, 2009), and quantum thermo-
dynamics (Maruyama, Nori, and Vedral, 2009). The quantum
versions of the Carnot and other heat engines were discussed
by Quan ef al. (2007). A proposal for the implementation of a
quantum heat engine assisted by a Maxwell demon with
superconducting circuits was given by Quan et al. (2000).

There are many potential applications for quantum simu-
lators in various fields of physics and chemistry. As mentioned
at the beginning of this section, with quantum simulation one
can address problems that are either classically intractable
(such as the numerous examples from condensed-matter
physics discussed above) or experimentally difficult or inac-
cessible (such as the examples from high-energy physics and
cosmology). As practical quantum simulators become avail-
able, it is to be expected that more disciplines will want to add
quantum simulation to their toolbox of research methods and
many new applications will be uncovered.

VIII. CONCLUDING REMARKS

Recent theoretical and experimental results on quantum
simulation lead us to believe that practical quantum simulators
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will be built in the near future. The demonstration of quantum
simulations using more than a few tens of qubits would mark
the point where quantum computers (whether digital or
analog) surpass their classical counterparts, at least for certain
applications. This would be a milestone for physics, computer
science, and science in general.

However, there are still issues that must be addressed. From
the experimental point of view, in all proposed quantum
simulators improved controllability and scalability are
required. With the exception of atoms in optical lattices,
quantum simulators cannot yet handle large arrays of qubits.
On the other hand, individual control and readout are difficult
to realize for atoms in optical lattices, while for other systems
that is not a problem. We note here that for some problems
where bulk properties are of interest, individual control and
measurement may not be required. It is also important to note
that, as some recent experiments with trapped ions and
superconducting qubits have demonstrated, even with a
small-scale quantum simulator exciting physical phenomena
could be explored.

From the theoretical point of view, further studies of
decoherence and control would be very useful, especially
the estimation of the experimental requirements for each
quantum simulator. It is also of both theoretical and practical
importance to investigate when and to what extent one can
make use of the simulator’s decoherence.

Quantum simulators would not only provide insights into
new physical phenomena, but also help solve difficult quan-
tum many-body problems. Moreover, theoretical and exper-
imental progress in quantum simulation will also have a
positive impact on the development of other fields such as
adiabatic quantum computation (Farhi er al., 2001),
measurement-based quantum computation (Raussendorf,
Browne, and Briegel, 2003), topological quantum computa-
tion (Kitaev, 2003), and the theory of quantum computation
(Vollbrecht and Cirac, 2008). For example, adiabatic quantum
computation can be viewed as a special case of quantum
simulation where the ground state of the simulated
Hamiltonian encodes the solution to a computational problem.
The ability to simulate various Hamiltonians could then be
useful for realizing practical adiabatic quantum computation
(Ashhab, Johansson, and Nori, 2006). Progress on the
experimental implementation of quantum simulation would
also be relevant for measurement-based quantum computa-
tion. For instance, ions in planar Coulomb crystals (Taylor and
Calarco, 2008; Wunderlich, 2009) and atoms in optical lattices
(Kay, Pachos, and Adams, 2006) have been proposed for
implementing measurement-based quantum computation. The
study of entanglement in many-body systems and its relation
with quantum phase transitions (Amico et al., 2008) should
also be mentioned as an exciting direction closely related to
quantum simulation. Finally, the ability to incorporate non-
physical operations into quantum simulations of physical
systems (Mezzacapo et al., 2012) could lead to new possibil-
ities for studying quantum simulation and quantum systems in
general.

Quantum simulation will profoundly impact physics
research. It will provide a new tool for testing physical
theories or predicting the behavior of physical systems in
various possible conditions, in addition to allowing access to

Rev. Mod. Phys., Vol. 86, No. 1, January—March 2014

new physical regimes that are currently beyond experimental
reach. Even in the absence of a theory to be tested or
realistically motivated conditions under which the behavior
of a physical system is to be predicted, quantum simulators
will also offer scientists a new realm of exploration. It might
very well happen that unpredicted discoveries are made
through the curiosity-driven experimentation with future
quantum simulators.
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