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Tunneling spectrum of a pinned vortex with a robust Majorana state
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We study a heterostructure which consists of a topological insulator and a superconductor with a hole. The
hole pins a vortex. The system supports a robust Majorana fermion state bound to the vortex core. We investigate
the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in the proposed
setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as a
magnetic-field-dependent zero-bias anomaly of the tunneling conductance. Optimal parameters for detecting
Majorana fermions have been obtained. In the optimal regime, the Majorana fermion is separated from the
excited states by a substantial gap. The number of zero-energy states equals the number of flux quanta in the
hole; thus, the strength of the zero-bias anomaly depends on the magnetic field. The lowest energy excitations
bound to the core are also studied. The excited states spectrum differs from the spectrum of a typical Abrikosov
vortex, providing additional indirect confirmation of the Majorana state observation.
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I. INTRODUCTION

In 1937 Majorana derived [1] an alternative representation
of the Dirac equation for particles with spin 1/2. In this
representation the Dirac equation has an additional solution,
the so-called Majorana fermion. This unusual particle is equal
to its antiparticle, that is, for the Majorana fermion,

γ = γ †. (1)

This is impossible for the usual Dirac fermions. Among the el-
ementary particles, the neutrino is a candidate for the Majorana
fermion, but this is not firmly established yet. Several setups
[2–15] have been theoretically proposed for observing Majo-
rana fermions in condensed matter systems, e.g., excitations
in the quantum Hall effect, in topological superconductors of
(px + ipy) type, wires with strong spin-orbit interaction, etc.
The observation of Majorana fermions is of interest not only for
fundamental physics but also for potential applications. Ma-
jorana fermions are expected to exhibit non-Abelian statistics
and could be used to realize quantum gates that are topologi-
cally protected from local sources of decoherence [16]. Recent
experiments [17,18] hinted at the existence of a Majorana
fermion in nanowires coupled to superconductors and in hybrid
superconductor-topological insulator devices. However, the
problem is still open, and no smoking-gun evidence has
surfaced.

A. Previous results

The interface between a topological insulator and a super-
conductor is a candidate system for the possible realization of
Majorana fermions [11,12,19–21]. Such an interface has been
fabricated in experiments [18,22–25]. Electrons on the surface
of topological insulators are described by the two-dimensional
(2D) massless Dirac equation, where the electron and hole
excitations lie on a Dirac cone εk = vF|k|, and the Dirac point
of this cone is located at the Fermi level [26]. The contact

between the topological insulator and the superconductor
generates, through the proximity effect, a finite mass to these
Dirac fermions. In the presence of an external magnetic field,
the mass term acquires a nontrivial complex phase. Several
theoretical proposals for the realization of Majorana fermions
are based on this setup [11,12,19–21].

In this paper we discuss the system presented in Ref. [19]
(see Fig. 1). It consists of three layers: the topological
insulator at the bottom, a sufficiently thick layer of an s-
wave superconductor on top, and between them a thin buffer
insulating layer, which controls the electron tunneling between
the topological insulator and the superconductor. The system
is placed in a weak magnetic field to create a vortex in the
superconductor and, consequently, a 2D vortex in the 2D
superconducting state induced on the surface of the topological
insulator. The core of the 2D vortex hosts the Majorana fermion
state [27].

In general, a setup of this type has an obvious deficiency,
which hampers the detection of the Majorana fermion state:
the minigap separating the Majorana fermion and the so-called
Caroli-de Gennes-Matricon (CdGM) levels in the core of the
Abrikosov vortex [28] is too small (about 10−2 K). To detect the
Majorana fermion, both the temperature and the experimental
energy resolution must be smaller than the minigap, thus, the
smallness of the minigap imposes very stringent requirements
on experiments.

Fortunately, it is known that, when an Abrikosov vortex
is pinned by a columnar defect, the minigap increases when
increasing the defect radius [29]. This happens because the
lowest CdGM states are destroyed by the defect. Consequently,
the minigap, as a function of the defect radius R, saturates
when R ∼ ξ , where ξ is the superconducting coherence length.
In such a regime, virtually all CdGM states are destroyed.
Based on this idea, it was proposed [19] to pin the Abrikosov
vortex on a hollow cylindrical channel in the superconducting
layer (see Fig. 1). The purpose of this “hole” is twofold: It
rids the system of a large set of parasitic CdGM excitations,
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FIG. 1. (Color online) Proposed experimental setup for detecting
a Majorana fermion. A layer of superconducting material (pink) is
separated from a slab of topological insulator (yellow) by a thin
insulating layer (blue). The external magnetic field is perpendicular
to the interface. A cylindrical hole in the superconductor serves as
a pinning center for a vortex. The tunneling conductance between
the tunneling probe (green) and the open fraction of the topological
insulator surface is used to investigate the low-lying single-electron
states bound to the vortex core.

and also allows access to the surface of the topological
insulator.

As for CdGM states inside the 2D vortex core, it was
demonstrated [12,19] that, if the chemical potential of the
2D Dirac electrons lies sufficiently close to the Dirac point,
the corresponding minigap is quite large, making the Majorana
state “robust” (related ideas for different physical systems have
been discussed in Ref. [13]).

B. Our results

The above arguments, however, are purely theoretical. To
demonstrate that the proposed system does indeed host a
Majorana fermion, a reliable experimental proof is required.
The purpose of this paper is to investigate the usefulness
of scanning tunneling spectroscopy (STS) as a tool to diag-
nose the presence of the Majorana fermion in the setup of
Fig. 1.

To address this question we discuss two related problems:
First, what STS features are associated with the presence
of the Majorana fermion in our setup; second, what are the
system parameters which optimize the observation of these
features. Below we will demonstrate that, even at not-too-low
temperatures, the tunneling spectrum can be used to identify
the Majorana state in the proposed system.

The remainder of the paper is organized as follows. In
Sec. II the Bogolyubov-de Gennes equations are derived.
The zero-energy solutions (zero modes) of these equations
are discussed in Sec. III. The tunneling spectrum at arbitrary
energy is discussed in Sec. IV. The results are discussed in
Sec. V.

II. BOGOLYUBOV-DE GENNES EQUATIONS

In this section we derive the differential equations for the
wave functions of the single-electron eigenstates bound to the
vortex core. The proximity effect in 2D materials has been
studied in several papers [30–32]. Our derivation generalizes
the procedure of Refs. [12,19] to account for an arbitrary
number of vortices trapped in the hole. The presentation below

is quite sketchy. For extra details the reader should consult
Refs. [12,19].

A. Microscopic model

The Hamiltonian of the system can be written as [12]

H = HTI + HSC + T + T †, (2)

where HTI,HSC are related to the topological insulator (TI)
and the superconductor (SC), respectively. The term T

describes the tunneling from the topological insulator to the
superconductor, and T † accounts for the tunneling from the
superconductor to the topological insulator. The corresponding
Bogolyubov-de Gennes equations [28] are (� = 1)

HTIψTI + T †ψSC = ωψTI, (3)

HSCψSC + T ψTI = ωψSC. (4)

The terms HTI,HSC can be written as 4 × 4 matrices in the
Nambu basis,

HTI = [iv(σ · ∇r ) − U (r)]τz,
(5)

HSC = −
(

EF + ∇2
R

2m

)
τz + 	′(R)τx + 	′′(R)τy,

and T = τzT (R − r). In these equations, R = (x,y,z) is a
point in the bulk of the superconductor, r = (x,y) is a point
on the surface of the topological insulator, σj ,τj are the spin
and charge Pauli matrices, 	′,	′′ are the real and imaginary
parts of the order parameter in the superconductor, v is the
Fermi velocity of the electrons on the surface of the topological
insulator, EF is the Fermi energy in the superconductor, and
U (r) is a gate voltage applied to control the Fermi level in
the topological insulator [12]. The wave functions ψTI, SC are
four-component spinors:

ψTI, SC = [u↑,u↓,v↓, − v↑]T . (6)

In Hamiltonian Eq. (5) the vector potential describing
the magnetic field is omitted. This is justified provided that
the flux, passing through the area where the subgap wave
functions are localized, is smaller than the flux quantum.
In the regime we study, the subgap states are localized
within distance r ∼ ξ from the hole center, consequently, the
magnetic field may be neglected when (ξ/λL)2 � 1, where λL

is the London penetration depth in the superconducting film.
Thus, for the type-II superconducting film this condition is well
satisfied.

We also neglect the effects of the magnetic field on
the superconductor. The magnetic field necessary for a flux
quantum to enter the superconductor Hc1 is much smaller
than the thermodynamic field Hc. Thus, the effects of mag-
netic field on the superconductor are expected to be quite
moderate.

It is easy to check that H satisfies the following charge-
conjugation symmetry:

H = −τyσyH
∗τyσy. (7)

Consequently, for every eigenstate ψ of H with a nonzero
eigenenergy ω 	= 0, an eigenstate τyσyψ

∗ with eigenenergy
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−ω is present. This symmetry is very robust: Disorder potential
does not destroy this property.

B. Effective Hamiltonian

Following Ref. [12] we exclude ψSC from Eqs. (3) and (4)
to derive

(HTI + �)ψTI = ωψTI, (8)

� = T †(ω − HSC)−1T . (9)

We are interested in bound states with energies lying within
the superconducting energy gap |ω| < |	|. In this case, the
self-energy matrix � can be calculated quite straightforwardly
[12,19]. For low-lying electron states k ≈ M (here M is the
location of the Dirac cone apex in the topological insulator
Brillouin zone), it is equal to

�M,ω = λ
	τx − ωτ0√
|	|2 − ω2

− δUτz, (10)

where τ0 is the 2 × 2 identity matrix. The parameter λ has
the dimension of energy. It characterizes the transparency
of the barrier between the topological insulator and the
superconductor [12]: when λ ∼ EF (λ � EF), the barrier is
transparent (nontransparent). The parameter δU = O(λ) is
the shift of the topological insulator chemical potential due
to doping by the superconductor.

Using Eq. (10) we can cast the Bogolyubov-de Gennes
Eq. (8) in the form,

HeffψTI = ωψTI, (11)

where the effective Hamiltonian Heff and its parameters are
[12]

Heff = [iṽ(ω)(σ · ∇r) − Ũ (ω)]τz + 	̃′(ω)τx + 	̃′′(ω)τy,

(12)

ṽ(ω) = v
√

|	|2 − ω2√
|	|2 − ω2 + λ

, (13)

Ũ (ω) = (U + δU )
√

|	|2 − ω2√
|	|2 − ω2 + λ

, (14)

	̃(ω) = 	λ√
|	|2 − ω2 + λ

. (15)

We see that the effective parameters experience energy-
dependent renormalization with respect to the bare quantities.

C. Normalization of the effective wave function

In addition to the effective Hamiltonian, it is desirable to
have a normalization condition for the effective wave function
ψTI. The normalization condition in the k space for the full
wave function is∫

k

(
ψ

k,ω
TI

)†
ψ

k,ω
TI +

∫
kkz

(
ψ

k,kz,ω

SC

)†
ψ

k,kz,ω

SC = 1, (16)

where the symbol
∫

k stands for
∫

d2k/(2π )2, and
∫

k,kz
stands

for
∫

d2kdkz/(2π )3. Excluding ψ
k,kz,ω

SC , we can rewrite the
latter equation as∫

k

(
ψ

k,ω
TI

)†
ψ

k,ω
TI +

∫
k

(
ψ

k,ω
TI

)†
P̂k,ωψ

k,ω
TI = 1, where (17)

P̂k,ω =
∫

kz

T
†

k,kz

(
ω − H

k,kz

SC

)−2
Tk,kz

= −∂�k,ω

∂ω
. (18)

We will see below that ψTI(r) varies over a length scale
∼ ξ . Consequently, v|k − M| ∼ 	. In such a regime, we
can assume that P̂k,ω ≈ P̂M,ω. Using Eq. (10), where δU is
virtually independent of ω, we obtain

P̂M,ω = λ	
	τ0 − ωτx

(	2 − ω2)3/2
, |ω| < 	. (19)

In this approximation P̂ is momentum independent, and
Eq. (16) can be rewritten in real space as∫

d2r
[
ψω

TI(r)
]†

(1 + P̂M,ω)ψω
TI(r) = 1. (20)

Observe that for |ω| approaching |	|, the matrix P̂ diverges.
This divergence occurs because in the regime 0 < |	| −
|ω| � |	| an electron spends a large portion of its time in the
superconductor. Therefore, the norm of ψSC = P̂ψTI increases
relative to the norm of ψTI.

D. Equations for the effective wave function

We are looking for solutions of the Bogolyubov-de Gennes
equations Eq. (11) which correspond to bound states. Conse-
quently, the energies of these solutions ω should be smaller
than the proximity-induced gap 	TI, which satisfies the
equation [19],

	TI

λ
=

√
	 − 	TI

	 + 	TI
. (21)

Imagine now that l vortices end up trapped by the hole. In such
a situation, the order parameter 	(r) can be expressed as [33]

	(r) = |	(r)|eilθ , (22)

where r and θ are polar coordinates, and |	(r)| → |	| when
r → ∞. If the hole radius R is large, R > ξ , |	(r)| can be
approximated as

|	(r)| = |	|�(r − R), (23)

where �(r) is the Heaviside step function.
Let us define a spinor F as

ψTI = exp[−iθ (lτz + σz)/2 + iμθ ]Fμ(r),

Fμ = (
f

μ

1 ,f
μ

2 ,f
μ

3 , − f
μ

4

)T
. (24)

The physical meaning of μ is the total angular momentum of
the state. The transformation in Eq. (24) is well defined only
when

j = μ + l + 1

2
(25)
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is an integer. In other words, when the number of vortices l is
odd (even), the angular momentum μ is integer (half-integer).

Substituting Eqs. (12), (15), and (24) in Eq. (11) we derive

iṽ

(
d

dr
+ 2μ + l + 1

2r

)
f

μ

2 + |	̃|f μ

3 − (ω + Ũ )f μ

1 = 0,

iṽ

(
d

dr
− 2μ + l − 1

2r

)
f

μ

1 − |	̃|f μ

4 − (ω + Ũ )f μ

2 = 0,

iṽ

(
d

dr
+ 2μ − l + 1

2r

)
f

μ

4 + |	̃|f μ

1 − (ω − Ũ )f μ

3 = 0,

iṽ

(
d

dr
− 2μ − l − 1

2r

)
f

μ

3 − |	̃|f μ

2 − (ω − Ũ )f μ

4 = 0.

(26)

These equations are the foundation on which the main results
of this paper are based. These equations will be solved
and analyzed for different values of ω, μ, and l. Since
Eq. (26) admits the following symmetry: μ ↔ −μ, f4 ↔ if1,
f3 ↔ if2, Ũ ↔ −Ũ , only μ � 0 solutions have to be found
explicitly.

We mentioned above that, upon contact, the superconductor
dopes the surface states of the topological insulator. Conse-
quently, U becomes a function of r . However, we assume
below that U = 0, since this condition is most favorable
for the observation of the Majorana fermion. To satisfy this
requirement, an external gate electrode controlling U might
be necessary. If U (r) is nonzero, yet remains small for any r ,
then perturbation theory can be used to account for it.

III. ZERO-ENERGY SOLUTION

In this section, we will obtain all zero-energy (ω = 0)
solutions. Such solutions are often called “zero modes”. It
will be shown that the number of zero modes is equal to the
number of vortices in the hole l.

If ω = Ũ = 0, the system of Eq. (26) decouples into two
sets of equations,

iṽ

(
d

dr
− 2μ + l − 1

2r

)
f

μ

1 − |	̃|f μ

4 = 0,

(27)

iṽ

(
d

dr
+ 2μ − l + 1

2r

)
f

μ

4 + |	̃|f μ

1 = 0,

and

iṽ

(
d

dr
+ 2μ + l + 1

2r

)
f

μ

2 + |	̃|f μ

3 = 0,

(28)

iṽ

(
d

dr
− 2μ − l − 1

2r

)
f

μ

3 − |	̃|f μ

2 = 0,

where |	̃| = |	̃(r)| is given by Eq. (23).
Outside the hole (r > R), the gap |	̃| is nonzero. Finite

solutions of Eqs. (27) and (28) can be expressed in terms of
the modified Bessel functions Km(x):

f1 =Ar
l
2 Kμ−1/2

(
λr

v

)
, f4 = −iAr

l
2 Kμ+1/2

(
λr

v

)
,

(29)

f2 =Br− l
2 Kμ+1/2

(
λr

v

)
, f3 = −iBr− l

2 Kμ−1/2

(
λr

v

)
.

In the hole (r < R) we have 	̃ = 0 and these systems decouple
further into four independent equations. They can be easily
solved:

f1 = C1r
μ+ l−1

2 , f4 = C4r
l−1

2 −μ,
(30)

f2 = C2r
−μ− l+1

2 , f3 = C3r
μ− l+1

2 .

Of these four functions, f2 has the strongest singularity
at r = 0. Since a wave function has to be normalizable:∫

rdr|f2|2 < ∞, the divergence of f2 must not be too
strong: μ + (l + 1)/2 < 1. For positive μ and l this inequality
cannot be satisfied simultaneously with the condition (25).
Therefore, C2 = 0. Further, the function f4 is normalizable
when

μ <
l + 1

2
. (31)

Matching the solutions of Eqs. (30) and (29) at r = R, we
conclude that f2 = f3 = 0, while f1,4 are nonzero only if
Eq. (31) is satisfied.

Using the symmetry between positive and negative μ, one
can generalize Eq. (31) for arbitrary μ:

|μ| <
l + 1

2
. (32)

As explained above, the condition that j , Eq. (25), is an integer
implies that μ is an integer, if l is odd, and μ is a half-integer,
if l is even. Keeping this in mind, one discovers that there are
no zero-energy solutions in the absence of the vortex, l = 0.
There is a single zero mode with μ = 0, if l = 1. In the case
of two vortices in the hole, l = 2, we have two zero-energy
solutions with μ = ±1/2; if l = 3 there exist three zero-energy
solutions with μ = 0, ± 1, etc. One can convince oneself that
the number of zero-energy solutions coincides with the number
l of vortices in the hole.

This connection between the number of zero modes
and l may be detected experimentally: It implies that the
zero-bias anomaly of the tunneling spectrum is sensitive to
the magnetic field. We will discuss this in more detail in
Sec. V.

IV. SYSTEM WITH A SINGLE VORTEX

In this section we study a system with a single vortex
pinned by a hole (l = 1). Since l is odd, the vortex hosts a
single Majorana fermion. This Majorana fermion state can
be detected in the tunneling experiment depicted in Fig. 1.
It manifests itself as a zero-bias anomaly of the tunneling
spectrum. We will determine the parameter range where the
zero-bias anomaly current is the strongest.

In addition to the Majorana fermion state, a set of subgap
excited states is localized in the core of the vortex (the
term “subgap state” implies that the eigenenergy of such
a state lies within the bulk single-electron gap: |ω| < 	TI).
Unlike a typical Abrikosov vortex, whose core is filled with
a dense CdGM spectrum, in our situation the number of
subgap states is small: There can be as few as two states
with positive eigenenergies (and, respectively, two states with
ω < 0). We will numerically calculate the subgap spectrum
and discuss the optimization of the system parameters to
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facilitate the detection of this spectrum in a tunneling
experiment.

A. Majorana fermion

When l = 1 the solution for the Majorana fermion, Eqs. (29)
and (30) with μ = 0, continuous at r = R, reads

f1 = −if4 = C1, r < R,
(33)

f1 = −if4 = C1 exp [−λ(r − R)/v], r > R,

where C1 is a constant.
For the tunneling experiment depicted in Fig. 1, it is

important that the wave function of a probed state is well
localized within the hole. As a measure of such localization,
let us calculate the following ratio:

I =
∫ +∞
R

(1 + P̂M,0)ρ(r)2πr dr∫ R

0 ρ(r)2πr dr
, (34)

where the probability density ρ(r) is equal to

ρ(r) = |f1(r)|2 + |f2(r)|2 + |f3(r)|2 + |f4(r)|2

= 2|C1|2
{

1, r < R,

exp
[− 2λ

	

(r−R)
ξ

]
, r > R,

(35)

and the operator P̂M,0 (accounts for the tunneling into the
superconductor) equals to

P̂M,0 =
{

0, r < R,

λ
	

, r > R.
(36)

Here we use the relation v = 	ξ . The quantity I varies from
0 to +∞. If I = 0, the Majorana fermion is localized entirely
within the hole radius; when I is large the wave function
spreads out deeply into the bulk. Thus, to enlarge the tunneling
current we want to have a small I . Simple calculations show
that

I =
(

ξ

R

)(
1 + 	ξ

2λR

) (
1 + 	

λ

)
. (37)

Since R > ξ , to have a small I < 2, we need λ/	 > 1.7.
Below we will see that this inequality will be satisfied in the
optimal regime.

B. Equation for the energies of the excited states

When ω 	= 0, the solution of Eq. (26) in the hole (r < R)
can be expressed in terms of the Bessel functions Jν(z):

f
μ

1 = iAJμ

(
ω

	

r

ξ

)
, f

μ

2 = AJμ+1

(
ω

	

r

ξ

)
,

(38)

f
μ

3 = iBJμ−1

(
ω

	

r

ξ

)
, f

μ

4 = BJμ

(
ω

	

r

ξ

)
.

If r > R, it is convenient to introduce the following linear
combinations [19]:

X
μ

1 = if
μ

1 + f
μ

4 , X
μ

2 = if
μ

1 − f
μ

4 ,
(39)

Y
μ

1 = if
μ

2 + f
μ

3 , Y
μ

2 = if
μ

2 − f
μ

3 ,

Y
μ

1 = iṽ

ω

(
dX

μ

1

dr
− 1

ξ̃

|	̃|√
|	̃|2 − ω2

X
μ

1 − μ

r
X

μ

2

)
,

(40)

Y
μ

2 = iṽ

ω

(
dX

μ

2

dr
+ 1

ξ̃

|	̃|√
|	̃|2 − ω2

X
μ

2 − μ

r
X

μ

1

)
,

where ξ̃ (ω) = ṽ√
|	̃|2 − ω2

, (41)

and express the solutions in terms of Whittaker functions [34],

X
μ

1,2 = C1,2√
r

Wα1,2,μ

(
2r

ξ̃ (ω)

)
, (42)

α1,2 = ∓ |	̃|
2
√

|	̃|2 − ω2
. (43)

Since we seek the subgap solutions (ω < |	TI|), the values
α1,2(ω) and ξ̃ (ω) are real, and the latter can be considered as a
characteristic localization length of the excitation with energy
ω. Matching solutions at r = R, we derive the following
equation for the eigenenergies ω of the subgap excited states,(

W ′
α1,μ

ξ̃Wα1,μ

+ W ′
α2,μ

ξ̃Wα2,μ

− μ + 1/2

R
+ ωJμ+1

ṽμJμ

)
×

(
W ′

α1,μ

ξ̃Wα1,μ

+ W ′
α2,μ

ξ̃Wα2,μ

+ μ − 1/2

R
− ωJμ−1

ṽμJμ

)

=
(

W ′
α1,μ

ξ̃Wα1,μ

− W ′
α2,μ

ξ̃Wα2,μ

− 	̃

ṽ

)2

. (44)

Here the Whittaker functions Wα,μ(z) are taken at z =
2R/ξ̃ (ω) and the Bessel functions Jα(z) at z = ωR/v. Prime
means differentiation over z: W ′

α,μ(z) = dWα,μ(z)/dz.
Equation (44) corrects a misprint in Eq. (41) of Ref. [19].

There, instead of the valid (μ ± 1/2)/R terms, the incorrect
(μ ± 1)/R are shown.

C. The first and higher excited states

Equation (44) can be used to study the dependence of the
eigenenergies of the subgap states on the system parameters
R/ξ and λ/	. Each excited state can be characterized [19,28]
by a pair of quantum numbers μ,n, where n is the principal
quantum number of a solution of Eq. (44) with a given μ.

Our numerical analysis shows that the lowest excited state
of our system corresponds to the quantum numbers μ = 1
and n = 0. The energy of the first excited state, as a function
of the hole radius R > ξ , is plotted in Fig. 2 for different
barrier transparencies λ/	. Note that we do not calculate the
energy for small values of R. Indeed, if R < ξ , the developed
formalism becomes invalid and, in addition, in such a regime
the Caroli-de Gennes-Matricon levels begin populating the
core of the vortex.

As we can see from Fig. 2, the energy gap between the
first excitation and the Majorana fermion decreases when R

increases. This is quite a natural behavior: The growth of the
radius R leads to an increase of the effective confinement
area. As it is seen from the results shown in Fig. 2, the hole
radius must not exceed several ξ , otherwise, the gap between
the Majorana fermion and the exited states shrinks too much.
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FIG. 2. (Color online) Normalized energy ω

	
of the first excited

state (μ = 1 and n = 0) as a function of the normalized hole radius
R/ξ for different barrier transparencies λ. The energy of the first
excited state is bounded from above by 	TI(λ) (the gap in the
topological insulator), which is a decreasing function of λ. For
λ = 20	, solving Eq. (21), we find that 	TI ≈ 	. When λ = 2	,
the gap 	TI ≈ 0.75	; when λ = 	, the gap 	TI ≈ 0.54	. Finally,
	TI(0.5	) ≈ 0.35	.

It also follows from Fig. 2 that the increased transparency
of the barrier between the topological insulator and the
superconductor, λ � 	, does not give rise to a significant
increase of the gap compared with the case λ/	 � 2. If
we choose 2 < R/ξ < 4 and λ � 2	, then the gap is about
0.4–0.6 in units of 	.

Similar to Eq. (35), we can calculate the probability density
ρ1(0) in the center of the hole for the first excited state. The
corresponding wave function is given by Eqs. (29) and (30).
These expressions have to be matched at r = R. For r > R,
the normalization condition Eq. (20) must be used. Numerical
results show that ρ1(0) for the chosen range of parameters
is of the same order as that for the Majorana fermion ρ(0):
ρ1(0)/ρ(0) ≈ 0.67. The excitation with the orbital number −μ

has the same energy with the excitation μ. Total density of the
states at the center of the hole with the same energy ω1 would
be 2ρ1(0): 2ρ1(0)/ρ(0) ≈ 1.3. This means that, in an idealized
tunneling experiment, both states manifest themselves as peaks
of comparable magnitude.

For R/ξ � 4.5 the second excited state has the quantum
numbers μ = 2, n = 0 (see Fig. 3). With good accuracy, the
energy difference between the first and second excited states
is

ω2 − ω1 > 0.1	, (45)

when R/ξ < 4, and λ > 2	 (see Fig. 4). However, the
probability density at the center of the hole, ρ2(0), vanishes for
this state. Thus, a tunneling experiment, in which the probe is
positioned near the center of the hole (r = 0), cannot detect
this state, unless disorder is present.

The eigenenergies of the lowest-lying excited states are
shown in Fig. 3. As one can see from this figure, when R is
smaller than some critical value Rcr, only two excited states

FIG. 3. (Color online) Energy of the low-lying excited states
as a function of the normalized hole radius R/ξ for the barrier
transparency λ = 2	. The red horizontal line shows the gap 	TI,
induced in the topological insulator by the proximity effect. Note
that the state with μ = 2 has zero probability density at the center
of the hole. Thus, it cannot be observed in a tunneling spectrum if
the probe is located at r = 0. For R < Rcr ≈ 3, only the state with
μ = 1, n = 0, and the Majorana fermion contribute to the spectrum
below the gap |ω| < 	TI.

remain. Of these two, only μ = 1 state has finite probability
density at r = 0. For R > Rcr, more states split off from the
continuous spectrum and form bound states inside the gap 	TI.

D. Back-of-the-envelope estimates

The numerical results for the first excited state can be
checked against simple “back-of-the-envelope” calculations.
A wave function of a subgap state on the surface of the
topological insulator is finite for r < R, but decays quickly

FIG. 4. (Color online) Energy gap between two low-lying ex-
cited states, the first excited state (μ = 1, n = 0) and the state μ = 2,
n = 0, as a function of the normalized hole radius R/ξ .
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for r − R > ξ . In other words, because of the superconducting
gap, an electron with energy |ω1| < 	 is effectively confined
to an area of radius Rconf = R + ξ . Therefore, |ω1| ≈ v|k1|,
where the quantized momentum |k1| ≈ π/(2Rconf). This
means that

ω1

	
≈ π

(2R/ξ ) + 2
≈

{
0.8 if R/ξ = 1.0,

0.2 if R/ξ = 7.0.
(46)

These numbers agree well with the numerical data for large
barrier transparencies (see Fig. 2). The quality of this estimate
deteriorates for smaller λ, because in this regime the induced
gap decreases, and the confinement of the subgap state
becomes weaker. As a result, our simple estimate for Rconf

becomes inaccurate, at least for small R (for larger R the
accuracy of this estimate improves, since the hole radius
becomes the dominant contribution to Rconf).

E. Resolving exited states

In this section we will discuss the optimization of our
system for the purpose of resolving the excited states. We will
assume that the STS tip is placed above the center of the hole.
In such a situation, only states with ρ(0) > 0 contribute to the
tunnel current. As can be seen from Eq. (39), only states with
μ = 0, ± 1 have a nonzero probability density at the center of
the hole. The numerical analysis of Eq. (44) shows that, when
|μ| � 1, the lowest excited state corresponds to the quantum
numbers n = 0, μ = 1, next is the state n = 1, μ = 0, and
afterward n = 2, μ = 0.

When R < Rcr, of these three states only the state with
n = 0, μ = 1 remains inside the gap. Two others are virtually
merged with the continuum spectrum above 	TI.

A hole with a radius of the order of Rcr is optimal for the
observation of the first excited state. Indeed, in this regime
only the first excited state contributes to the tunneling current
at the center of the hole. Furthermore, for a broad range of
transparencies λ, this state lies close to the middle of the gap
ω1 ≈ 	TI/2, being well separated from both the Majorana
state at ω = 0 and from the continuum at |ω| = 	TI.

The dependence of Rcr on the barrier transparency λ is
shown in Fig. 5. The optimal transparency of the barrier
λ � 2	, thus, the optimal radius is 2ξ < R < 3ξ . For these
parameters, the gap between the Majorana fermion and the
first excited state is about 0.4	, and between the first excited
state and the continuum is about 0.3	.

V. DISCUSSION

Current interest in Majorana fermions is fueled, among
other reasons, by the possibility to devise a future topological
quantum computer. To realize this Majorana fermion-based
computer, Majorana fermion localized states must be created
and moved in space in a controllable manner. At present, this
appears to be a very distant goal. The more modest objective of
creating an immobile Majorana fermion is being pursued now,
and certain initial steps are happening in this direction [17,18].
However, no decisive proof of Majorana fermion states is
available. In this paper we study a simple heterostructure
[19] where an immobile Majorana fermion can be generated.
Despite its relative simplicity, the proposed system has several

FIG. 5. (Color online) Critical radius Rcr as a function of the
normalized transparency λ/	 of the barrier. The critical radius is
defined by the requirement that for R < Rc only one subgap state
(see Fig. 3) has nonzero density of states at the center of the hole.

advantages, which can be useful for the experimental detection
of the Majorana state. In this section we offer a nontechnical
summary of the system’s most important features.

A. Large minigap

One of the key characteristics of our system is the
substantial energy gap between the zero-energy Majorana
fermion and the lowest excited state. This is important
since it alleviates requirements on the temperature and the
energy resolution of the experiment. By choosing the system
parameters adequately, the energy of the first excited state can
be as large as 0.4	 ∼ 4 K. This gap is much larger than the
minigap for CdGM states δε ∼ 	2/EF ∼ 10−2 K (we assume
that EF ∼ 104 K and 	 ∼ 10 K).

To understand the origin of such a large minigap in our
system we can resort to a simple “particle-in-a-box” estimate:
A massless Dirac fermion with energy ω < 	TI is trapped
inside a disk of radius R ∼ ξ (the entrapment occurs because
the particle energy is below the gap 	TI, thus, it cannot
propagate in an environment with a gap, which exists for
r > R). This simple estimate reproduces the numerical results
quite accurately; see Eq. (46). Analyzing the derivation of
Eq. (46), one concludes that the large minigap is a consequence
of the linear spectrum of the excitations on the surface of the
topological insulator.

Finally, we would like to cite Ref. [36], which studied sim-
ilar heterostructures in the limit of the weak proximity effect
λ � 	 (we did not study this regime, since it corresponds to
a very low induced gap: 	TI � 	). These papers established
that the minigap is of the order of the proximity-induced gap.
How can these results be applied to our case where λ ∼ 	?
Note that for very weak λ the minigap is an increasing function
of λ. When λ becomes comparable to 	, the minigap reaches
some finite value 	∗. How does this value compare against 	?
We notice that in the regime λ ∼ 	TI ∼ 	 there is only one
energy scale in our system, and we conclude that 	∗ ∼ 	.
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The system with such a large minigap deserves a detailed
study. Here our aim was twofold: to investigate how the local
tunneling spectroscopy can be used to prove the existence of
the Majorana fermion in our setup (Sec. V B), and to optimize
the parameters of the system for such an experiment (Sec. V C).

B. Tunneling spectroscopy of the core

The Majorana fermion should manifest itself on a tunneling
experiment as a zero-bias peak. However, the zero-bias peak
may be caused by other mechanisms (see, for example,
the analysis of Ref. [35]), thus, additional verifications are
necessary. In this paper we discussed two types of further
measurements. First, one can study the dependence of the zero-
bias anomaly on the magnetic field. As it follows from Eq. (32),
the number of zero modes is equal to the vorticity pinned by
the hole. Thus, when the field is increased, in the disorder-free
system the strength of the zero-bias anomaly should experience
a stepwise increase each time an extra flux quantum enters the
pinning hole. If disorder is present, the behavior of the zero-
bias anomaly changes. The disorder potential lifts the degener-
acy of the zero-energy states (splitting of the zero-energy man-
ifold by a perturbation is studied in Ref. [38]). However, due
to symmetry [see Eq. (7)], the parity of the zero-mode number
remains unchanged by the disorder. Therefore, for even (odd)
vorticity l there is no (single) zero-energy Majorana fermion
state bound to the hole. This means that, if weak disorder is
present, the zero-bias anomaly demonstrates a nonmonotonous
dependence on the magnetic field. The experimental verifica-
tion of such a nonmonotonicity would be a strong argument
in favor of Majorana fermion states in our heterostructure. Of
course, inducing multiply quantized vortex in experiment is a
complicated, but not insurmountable, issue [37].

Magnetic field may also lift the degeneracy of the zero-
energy states. We already explained above that the magnetic
field significantly affects a particular state only when the flux
through the area where this state is localized is comparable
with the flux quantum. In our situation, this condition is not
satisfied, and it is possible to apply perturbation theory in
orders of the vector-potential A to account for the magnetic
field. Equations (29) and (30) for the zero-energy wave func-
tions valid for U = 0 can be used to evaluate the corresponding
matrix elements. However, it is easy to check that these matrix
elements are identically zero. They may become finite only
when U 	= 0. Consequently, in the limit |U | � 	, which is
the most suitable for observation of the Majorana fermion,
the splitting due to the magnetic field is very weak, at least
when the trapped vorticity remains small. When the vorticity
grows, a more advanced treatment might be required. However,
at large vorticity the detrimental effects of magnetic field on
the superconducting structure degrade the performance of the
system in a variety of ways. Thus, the limit of strong magnetic
field is outside the optimal regime, and we will not study it in
this paper.

The second type of measurements we discussed is the
resolution of the excited subgap states bound to the hole.
Unlike the classical CdGM states, which densely fill the core
of a vortex, only a small number of subgap excitations exists
in our setup. Strictly speaking, a successful detection of these
excitations does not constitute a proof for Majorana fermion

existence. Yet, it would provide an additional check point
validating the theoretical description of the heterostructure.

C. System parameter optimization

To facilitate experiments we investigated the possible
optimization of the system parameters. We found that if the
tunneling probe is situated over the center of the hole, only
excitations with small n and μ contribute to the tunneling
conductance. Excited states with higher n and μ are localized
closer to the hole periphery; thus, they do not affect signifi-
cantly such a tunneling spectrum. Consequently, if

R

ξ
� 2 − 3,

λ

	
� 2, (47)

then only a single subgap state can be seen in the tunneling
spectrum measured at r = 0. Under these conditions, the
energy gap between the Majorana fermion and this excited
state is about 0.4	, and between the excited state and the
continuum above the superconducting gap is about 0.3	. The
numerically calculated tunneling conductance for this situation
is presented in Fig. 6.

To obtain some estimates, let us now take the characteristic
values Tc = 10 K and 	 = 1.76Tc ≈ 17.6 K for a BCS-type
superconductor. Then we obtain the optimal value λ � 4 meV.
From Fig. 6 we conclude that T � 0.2–0.5 K is needed to
resolve the Majorana fermion and the excited states. To find
the radius of the hole we use the formula ξ = v/	 ≈ 200 nm
(using the value v = 5.0 × 107 cm/s reported in Ref. [39] for
Bi2Se3). Thus, R ∼ 400–600 nm.

During our discussion we tacitly assumed that the coher-
ence length in the superconductor ξSC is identical to ξ = v/	.
For BCS superconductor this implies that the Fermi velocity in
the superconductor is equal to v. Fortunately, such a restriction
may be replaced by a much weaker requirement: R > ξSC. This

FIG. 6. (Color online) Differential tunneling conductance for
different temperatures and optimal values of the parameters R/ξ = 3
and λ/	 = 2. Majorana state is responsible for the zero-bias peak.
When the STS tip is placed above the center of the hole (r = 0),
only one excited state (μ = ±1, n = 0) contributes to the tunneling
spectrum. This state corresponds to peaks at eV = ±0.4	.
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guarantees that the vortex core contains no CdGM states, and
our derivation of the effective Hamiltonian is valid.

To conclude, we discuss the application of scanning tun-
neling spectroscopy to investigate localized states in the topo-
logical insulator/superconductor heterostructure presented in
Fig. 1. STS can be used to detect the oscillation of the zero-bias
anomaly strength when the magnetic field is varied, and to
resolve subgap excited states. The successful observation of
both phenomena would provide strong evidence in favor of the
existence of a Majorana fermion state bound to the hole.
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