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An arbitrary initial state of an optical or microwave field in a lossy driven nonlinear cavity can be changed
into a partially incoherent superposition of only the vacuum and the single-photon states. This effect is known
as single-photon blockade, which is usually analyzed for a Kerr-type nonlinear cavity parametrically driven
by a single-photon process assuming single-photon loss mechanisms. We study photon blockade engineering
via a nonlinear reservoir, i.e., a quantum reservoir, where only two-photon absorption is allowed. Namely, we
analyze a lossy nonlinear cavity parametrically driven by a two-photon process and allowing two-photon loss
mechanisms, as described by the master equation derived for a two-photon absorbing reservoir. The nonlinear
cavity engineering can be realized by a linear cavity with a tunable two-level system via the Jaynes-Cummings
interaction in the dispersive limit. We show that by tuning properly the frequencies of the driving field and the
two-level system, the steady state of the cavity field can be the single-photon Fock state or a partially incoherent
superposition of several Fock states with photon numbers, e.g., (0,2), (1,3), (0,1,2), or (0,2,4). At the right (now
fixed) frequencies, we observe that an arbitrary initial coherent or incoherent superposition of Fock states with
an even (odd) number of photons is changed into a partially incoherent superposition of a few Fock states of
the same photon-number parity. We find analytically approximate formulas for these two kinds of solutions for
several differently tuned systems. A general solution for an arbitrary initial state is a weighted mixture of the
above two solutions with even and odd photon numbers, where the weights are given by the probabilities of
measuring the even and odd numbers of photons of the initial cavity field, respectively. This can be interpreted
as two separate evolution-dissipation channels for even and odd-number states. Thus, in contrast to the standard
predictions of photon blockade, we prove that the steady state of the cavity field, in the engineered photon
blockade, can depend on its initial state. To make our results more explicit, we analyze photon blockades for
some initial infinite-dimensional quantum and classical states via the Wigner and photon-number distributions.
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I. INTRODUCTION

The progress in realizing macroscopic quantum coherent
states in a variety of systems (in particular, involving super-
conducting devices [1]) makes many recently purely academic
problems very relevant for experimental research. Some such
problems are related to the interaction of photons in a cavity
with nonstandard reservoirs (e.g., reservoirs with entangle-
ment). In this paper we consider the case of a two-photon
absorbing reservoir [2–15] coupled to a nonlinear cavity. Such
a system can be realized, e.g., in the microwave range, using a
superconducting quantum interference device (SQUID) [7,16].
A general framework of two- and multiphoton dissipating
models, within the Lindblad master equations, was recently
described in Ref. [15]. It is worth noting that in the years 2010s
there has been a renaissance of interest in quantum-reservoir
engineering (also known as dissipation engineering) (see, e.g.,
Refs. [7,13–23]), which might be considered a new paradigm
not only for quantum state engineering but even for universal
quantum computation [22]. Here we show how to realize
photon blockade (PB) via a two-photon absorbing reservoir.

The term PB corresponds to the interpretation that a single
photon in a nonlinear cavity can block the transmission of a
second photon. Thus PB can be considered a photonic analog

of solid-state blockades including phonon blockade [24]
for quantum oscillations of nanomechanical resonators, the
celebrated Coulomb blockade observed in single-electron
tunneling experiments, or the related Pauli spin blockade
of electron transport due to spin correlations. A detailed
comparison showing the equivalence between the photon and
Coulomb blockades was given recently in Ref. [25]. We also
note that, e.g., PB can be used to demonstrate the occurrence of
phonon blockade in optomechanical systems in the microwave
regime [26], where both photon-photon and phonon-phonon
interactions are induced by a qubit (real or artificial two-level
atom).

In the last two decades there has been considerable the-
oretical and experimental interest in generating nonclassical
light via PB [27] in strongly coupled systems in cavity
quantum electrodynamics (QED) [28–34], and more recently
also in circuit QED [25,26,35,36] and quantum optomechan-
ics [37–40]. PB was demonstrated experimentally, e.g., in an
optical cavity with a single trapped atom [41], in a photonic
crystal cavity with a quantum dot [42], and in microwave
transmission-line resonators with a single superconducting
artificial atom [35,36]. Photon-induced tunneling, experimen-
tally demonstrated in Refs. [34,42,43], can also be explained in
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terms of PB. Closely related experiments [44,45] demonstrated
an observable optical nonlinearity (photon-photon interaction)
induced by a single atom in a cavity. Photon blockade was also
studied in the context of single-photon turnstile devices [27].
For example, Ref. [46] reports an experimental photon
turnstile device dynamically controlled by a single atom
in a microscopic optical resonator. The usual experimental
realizations of single-photon turnstile devices are based on
Coulomb blockade in various semiconductor systems [32] (see
Ref. [47] for a review). Finally, it is worth noting that typical
optical nonlinearities require strong light and macroscopic
media. The above-cited impressive experiments, which can be
considered as landmarks in quantum and atom optics, showed
the possibility to induce and apply optical nonlinearities at the
level of a single atom and one or few photons.

Photon-photon interactions induced by a two-level system
in a linear cavity can be effectively described as a Kerr
nonlinearity. The occurrence of nonstationary PB in such
Kerr nonlinear cavity was predicted in Ref. [48], and then
studied in various single-mode [49–51] and two-mode [52,53]
models. It should be stressed that all these works discuss
only the short-time evolution of dissipation-free or sometimes
dissipative nonlinear systems, so the predicted effects can be
referred to as nonstationary PB. This is the opposite of the
standard description of PB effects, which are only considered
in the steady-state limit. We also note that this nonstationary
Kerr-based PB is often referred to as a nonlinear optical-state
truncation or nonlinear quantum scissors (see reviews [54,55]).
By contrast, the effects of a linear optical-state truncation or
linear quantum scissors [56] are based on linear systems and
conditional measurements.

Nonclassical light generated via the standard single-photon
blockade [27,48] is a partially incoherent superposition of the
vacuum and single-photon states. Recently, the occurrence of
two-photon blockades was predicted, where the transmission
of more than two photons can be effectively blocked by single-
and two-photon states [57]. Thus, the generated nonclassical
light is a partially incoherent superposition of the n-photon
states for n = 0,1,2. This approach can be further generalized
for multiphoton blockades [57,58].

In all these PB phenomena, the generated state of light was
independent of its initial state. Here we describe nonclassical
light, generated via a generalized PB, which can be sensitive
to its initial state, thus providing an additional method of its
(limited) measurement.

Namely, we predict here the occurrence of photon block-
ades in Kerr nonlinear systems driven by a two-photon process
and dissipating by a two-photon absorption. We will show
that there is no mixing of number states of different parity
during the evolution of such Kerr nonlinear systems. Thus,
this evolution can be described by two solutions obtained for
separate Hilbert spaces spanned either by even- or odd-number
states. By considering only initial states of the same parity, the
steady state does not depend on the initial photon statistics.
However, the general solution for an initial state, which is
a superposition of the even- and odd-number Fock states, is
a weighted mixture of the above two solutions for different
parities. The weights are determined by the probabilities of
measuring the even and odd photon numbers of the initial

field, respectively. Thus, even this simple analysis reveals that
the steady state can depend on the initial state, although in this
limited manner. We will discuss this problem in detail in this
work.

We will study photon-number statistics and a phase-space
description to compare various PB effects. In particular, we
will apply the standard Wigner function which, for a given
state ρ̂, is defined by [59]

W (β) ≡ W (q,p) = 1

π

∫
〈q − x| ρ̂ |q + x〉 exp(2ipx)dx,

(1)

where q = Re β and p = Im β are the canonical position and
momentum operators, respectively. The Wigner function for
the nonclassical states generated in PB can be experimentally
reconstructed by quantum state tomography [60] or even
directly measured by applying the method of Ref. [61]. The
power of the latter method was demonstrated experimentally
for the superpositions of a few photons in cavity QED [62] and
circuit QED [63] systems.

The paper is organized as follows. Engineered photon
blockade is studied in the model described in Sec. II. In
particular, by applying the Jaynes-Cummings model with a
two-photon drive in the dispersive limit, we derive an effective
Hamiltonian describing a driven Kerr-type nonlinearity. In
Sec. III, we present analytical solutions describing nonsta-
tionary photon blockades and Rabi-type oscillations for the
model without dissipation. In Sec. IV and Appendix A, we
find and analyze steady-state solutions of a master equation
describing the two-photon loss mechanism. We discuss in
Sec. V how photon blockade depends on specific initial
fields. We summarize our main results in the concluding
section.

II. KERR NONLINEARITY WITH TWO-PHOTON DRIVE

Here we derive an effective interaction model, describing
a Kerr-type nonlinearity driven by a two-photon process. We
start from the driven Jaynes-Cummings (JC) model in the
dispersive limit.

We analyze a two-level system (qubit), with a tunable
transition frequency ωq, interacting with a cavity mode,
with frequency ωcav, via the Jaynes-Cummings (JC) model,
described by the Hamiltonian ĤJC . We assume that the cavity
field is parametrically driven by a two-photon process (with
frequency ωd), described by the Hamiltonian Ĥd. Thus, the
total Hamiltonian Ĥ for our system, including the free
Hamiltonian Ĥ0 for the qubit and the cavity field, can be given
as follows:

Ĥ = Ĥ0 + ĤJC + Ĥd, (2)

Ĥ0 = �ωcavâ
†â + �ωq

σ̂z

2
, (3)

ĤJC = �g(â†σ̂− + âσ̂+), (4)

Ĥd = �ε0[â2eiωdt + (â†)2e−iωdt ]. (5)

Here, g is the qubit-field coupling strength, ε0 is a driving
field strength, for simplicity, assumed to be positive; â (â†)
is the annihilation (creation) operator of the cavity mode; the
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FIG. 1. (Color online) Model 1: Dissipation-free evolution of the photon-number probabilities pn(t) = |〈n |ψ (m)
02 (t)〉|2 and the photon-

blockade fidelities F (t) = ∑
n pn(t) for the Hamiltonian Ĥ02, given by Eq. (14), for several initial Fock states |m〉 (as indicated in the panel

titles). We set ε = χ/6 = 5. Panels (a) and (c) show Rabi-type oscillations between the levels |0〉 and |2〉, if at least one of them is initially
populated. Rabi-type oscillations are not observed if the other levels are the only initially populated states, such as |1〉 and |3〉, as shown in
panels (b) and (d), respectively. These results have a simple physical explanation in terms of the resonances shown in Fig. 2.

spin operators are σ̂z = |g〉〈g| − |e〉〈e|, σ̂+ = |e〉〈g|, and σ̂− =
|g〉〈e|, where |g〉 (|e〉) is the ground (excited) state of the qubit.

We analyze the Jaynes-Cummings interaction in the disper-
sive limit, which occurs if the absolute value of the detuning

 = ωq − ωcav is much larger than the qubit-field coupling g;
i.e., we assume |λ| � 1 for the parameter λ = g/
.

Following the approach of Ref. [64], one can apply the
transformation U = exp[−f (λ)(â†σ̂− − âσ̂+)] to the Hamil-
tonian Ĥ , and expand the transformed Hamiltonian Ĥ ′ in
power series of λ, which results in

Ĥ ′ = Û †Ĥ Û

= �ω′
cavâ

†â + �ω̂′
q
σ̂z

2

+ �χâ†â(â†â − 2)σ̂z + Ĥ ′
d + O(λ4). (6)

Here, ω′
cav = ωcav + χ , ω̂′

q = ωq − η + 2(2χ − η)â†â,η =
−gλ(1 − λ2), and χ = −gλ3 is a Kerr-type nonlinearity
coupling. Note that χ > 0 if ωcav > ωq. Moreover, f (λ) is
given explicitly in Ref. [64], while Ĥ ′

d = Û †ĤdÛ will be
specified below. By assuming that the qubit is in its ground
state, we have

〈g|Ĥ ′|g〉 = �(ωcav + 3χ − η)â†â + �χâ†â(â†â − 2)

+ Ĥ ′
d + 1

2 (ωq − η) + O(λ4). (7)

The annihilation operator transforms as [64]

â′ = U †âÛ = âx̂ + λŷσ̂− + λ3â2σ̂+ + O(λ4), (8)

where x̂ = 1 + λ2σ̂z/2 and ŷ = 1 − 3λ2(â†â + 1/2). By
transforming the driving interaction Ĥd according to this
expansion of â′, and assuming the qubit to be in its ground
state, we find that

Ĥ ′
d = �ε[â2eiωdt + (â†)2e−iωdt ] + O(λ4), (9)

where ε = (1 + λ2)ε0. We note that by assuming that the qubit
is in its excited state, then it would be ε = (1 − λ2)ε0. Now we
apply another unitary operation Ûrot = exp[−i(ωd/2)â†ât],
which transforms the Hamiltonian Ĥ ′ into

Ĥ ′′ = Û
†
rotĤ

′Ûrot − i�Û
†
rot

∂

∂t
Ûrot. (10)

Here we also use the following operator-algebra the-
orems [65]: âf̂ (â†â) = f̂ (â†â + 1)â and f̂ (â†â)â† =
â†f̂ (â†â + 1), which are valid for any function f̂ of â†â.
Then it is easy to observe that the time-dependent Hamil-
tonian Ĥ ′

d is transformed by Ûrot into the time-independent
one Ĥ ′

d ≈ �ε(â2 + â†2) − �(ωd/2)â†â. Thus, in this rotating
frame, we arrive at the following time-independent effective
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FIG. 2. (Color online) Model 1: Explanation of the occurrence
of photon blockade via the energy levels of the Hamiltonian Ĥ

corresponding to Ĥs(�02 = �,�02 = 0), given by Eq. (12), in the
limit of a very small driving strength, ε � χ . The Kerr-nonlinear
term, proportional to χ , changes the harmonic spectrum (shown in
the left spectrum) into an anharmonic non-equidistant one (right side)
with En+1 − En �= const., where En = n�� + n(n − 2)�χ (with n =
0,1,...) are the eigenvalues of the Hamiltonian Ĥ . It is seen that the
two-photon transitions between the levels |0〉 and |2〉 (shown by a
solid double arrow in the right spectrum) can be induced by a driving
field with frequency ωd = (E2 − E0)/� = 2�, which is the same as
for the harmonic system. The other transitions between the levels,
e.g., |1〉 and |3〉, as well as |2〉 and |4〉 (as shown by the dashed double
arrows) are off-resonance with � or its multiples.

Hamiltonian:

〈g|Ĥ ′′|g〉 = Û †〈g|Ĥ ′|g〉Û = Ĥs + O(λ4) (11)

with

Ĥs(�02,�02) = ��02â
†â + �χâ†â(â†â − 2)

+ �ε[â2 + (â†)2] + ��02, (12)

where

�02 = ωcav + 3χ − η − 1
2 ωd, �02 = 1

2 (ωq − η). (13)

These frequencies �02 and �02 can be simultaneously equal
to zero by properly changing the detuning 
 (i.e., the qubit
transition frequency ωq or, equivalently, the cavity frequency
ωcav) and the classical driving-field frequency ωd. Thus, under
the above conditions, the effective Hamiltonian describing our
system, referred here to as model 1, is given by

Ĥ02 = Ĥs(�02 = 0,�02 = 0)

= �χâ†â(â†â − 2) + �ε(â†2 + â2) (14)

depending on the driving field strength ε and the Kerr nonlinear
coupling χ . One can also rearrange terms in Eq. (12) to obtain
the following Hamiltonian:

Ĥs(�kl,�kl) = ��klâ
†â + �χ (â†â − k)(â†â − l)

+ �ε[â2 + â†2] + ��kl, (15)

FIG. 3. (Color online) Model 2: Same as in Fig. 1, but for the probabilities pn(t) = |〈n |ψ (m)
13 (t)〉|2 obtained for the Hamiltonian Ĥ13, given

by Eq. (17) with k = 1,l = 3. Panel (a) [(b) and (d)] shows Rabi-type oscillations between the levels |0〉 and |4〉 ( |1〉 and |3〉), if at least one
of these levels is initially populated. Rabi-type oscillations are not observed if the other levels are the only ones, which are initially populated,
such as |2〉, shown in panel (c). The physical meaning of these results, analogously to those in Fig. 1, can be simply understood in terms of the
resonances shown in Fig. 4.
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FIG. 4. (Color online) Model 2: Same as in Fig. 2, but for the
Hamiltonian Ĥ corresponding to Ĥs(�13 = �,�13 = 0), given by
Eq. (15) with k = 1,l = 3 assuming ε � χ . Here the two-photon
(four-photon) transitions between the levels |1〉 and |3〉 (|0〉 and |4〉),
shown by solid double arrows in the right spectrum, can be induced
by a driving field with frequency ωd = (E3 − E1)/� = 2� [ωd =
(E4 − E0)/� = 4�], which are the multiples of the same frequency
� of the harmonic system.

where

�kl = ωcav + (k + l + 1)χ − η − 1
2 ωd,

(16)
�kl = 1

2 (ωq − 2klχ − η).

Analogously to the former case, one can avoid the contribution
of the terms proportional to the frequencies �kl and �kl

by properly changing the detuning 
 and the driving-field
frequency ωd. This results in the following Hamiltonian:

Ĥkl = Ĥs(�kl = 0,�kl = 0)

= �χ (â†â − k)(â†â − l) + �ε(â2 + â†2). (17)

Hereafter, we specify the Hamiltonian in Eq. (17) to the two
special cases of Ĥ13 (referred to as model 2) and Ĥ02 (model 1)
in our analytical approaches and numerical simulations shown
in Figs. 1–13. For clarity, we will usually explicitly denote
by ρ̂kl the state generated by the action of the corresponding
Hamiltonian Ĥkl .

This Kerr nonlinear oscillator driven by a two-photon (or
two-phonon) process is sometimes referred to as the Cassinian
oscillator, since its classical phase-space trajectories are the
ovals of Cassini (see, e.g., Ref. [66] and references therein).
Various realizations of the Cassinian oscillator have been
proposed. In our context, the most promising implementations
seem to be those based on SQUIDs [7,16,67].

In particular, Ref. [67] reports the experimental realization
of a parametric phase-locked oscillator (PO), also referred
to as a parametron. It is composed of a dc SQUID and
a superconducting coplanar waveguide linear resonator at a
static resonant frequency ωPO

0 . The SQUID, which is formally
equivalent to a qubit, introduces a Kerr-type nonlinearity (as
described by the nonlinearity parameter χ ′) into the system.
Thus, the PO can be described as an anharmonic oscillator.
The driving microwave field, at a frequency ωp, is applied to
a pump line being inductively coupled to the SQUID. This
driving field modulates the resonant frequency around ωPO

0 .

FIG. 5. (Color online) An intuitive explanation of the engineered
photon blockades in models 1 and 2 with two-photon dissipation,
and the standard photon blockade in model 3 with single-photon
dissipation. The diagrams schematically show the energy levels of
three Kerr-type nonlinear systems driven by a classical field with
frequency ωd in resonance with the desired transitions, as shown in
Fig. 2 for model 1 and Fig. 4 for model 2. The red ellipses with arrows
describe these [(a),(b)] two-photon and (c) single-photon drivings,
together with the Rabi-type oscillations between the corresponding
levels. The systems are described by the Hamiltonians (a) Ĥ02,
given by Eq. (14), (b) Ĥ13, given by Eq. (17) for k = 1,l = 3,
and Ĥusual, given by Eq. (20). The system dissipation is governed
by the master equations describing either [(a), (b)] two-photon or
(c) single-photon absorption for γ � ε � χ . The numerous green
single arrows pointing down describe these dissipations (absorptions).
These figures intuitively explain the occurrence of several kinds of the
engineered photon blockades, as well as two independent evolutions
of the initial Fock states with even and odd numbers of photons for
models 1 and 2. This implies that the engineered PB effects in panels
(a) and (b) can depend on the initial state of a cavity, although in a
limited way, as they depend solely on the ratio of the probabilities
of measuring the photon numbers of different parity. In contrast to
this, the steady state generated in standard PB, as shown in (c), is
independent of the cavity initial state.

The static system Hamiltonian reads [67]

Ĥsys(t) = �ωPO
0 [â†â + ε̄ cos(ωdt)(â + â†)2] + �χ ′(â + â†)4,

(18)

where â is the annihilation operator of the resonator, while ωd

and ε̄ stand for the frequency and strength of the parametric
modulation, respectively. We rewrite this Hamiltonian in
normal order. We also transform it into a rotating frame
by applying the unitary operation Ûrot = exp[−i(ωd/2)â†ât],
according to Eq. (10), and omit both the rapidly oscillating
and constant terms. Thus, one finally obtains the following
approximate Hamiltonian:

H ′
sys(t) = ��′a†a + �ε′(a2 + a†2) + �(6χ ′)a†a(a†a − 1),

(19)

where �′ = ωPO
0 + 12χ ′ − ωd/2 and ε′ = ωPO

0 ε̄/2. At the
resonant condition �′ = 0, one obtains the Hamiltonian of the
Supplement of Ref. [67] corresponding to our Hamiltonian
H01, which is a special case of Eq. (17) for χ = 6χ ′ and
ε = ε′. The general Hamiltonian Hkl , given by Eq. (17), with
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FIG. 6. (Color online) Model 1 with two-photon dissipation: (a),
(c) The Wigner functions W (β) and (b), (d) the photon-number
probabilities pn for the steady-state solutions ρ̂02

ss of the master
equation (26) with the Hamiltonian Ĥ02, given by Eq. (14), assuming
the cavity field to be initially in an arbitrary [(a), (b)] even- or [(c),
(d)] odd-number state. We set the ratios of the driving field strength
ε and the Kerr nonlinear coupling χ , and of the damping constant γ

and ε to be small and equal to δ = ε/χ = 1/6 and δ′ = γ /ε = 1/25.
The color codes in panel (c) (and all other figures of the Wigner
functions) are the same as in panel (a). Note that the negative regions
of the Wigner functions are marked in blue.

k,l = 0,1,2..., is obtained by properly choosing ωd to satisfy
the condition �′ + 6(k + l − 1)χ ′ = 0.

For a comparison, it is worth noting that the standard
predictions of photon blockade were reported for systems
described by the following Hamiltonian [27,48],

Ĥusual = �χâ†â(â†â − 1) + �ε(â + â†), (20)

referred here to as model 3, assuming a single-photon driving,
as described by the last term. Only for a brief comparison, we
show the solutions for Ĥ01 and Ĥusual in Fig. 14.

Let us also briefly consider the case when the frequency of
the single-photon driving field ωd is equal to the sum of the
Kerr nonlinearity χ and the cavity resonance frequency ωcav.
Then, as shown in Ref. [57], Eq. (20) can be replaced by

Ĥ ′
usual = �χâ†â(â†â − 2) + �ε(â + â†), (21)

referred here to as model 4, which can lead to two-photon
blockade (two-photon state truncation) if ε � χ .

For the benefit of the reader, the various models defined
here are listed in Table I.

III. NONSTATIONARY PHOTON BLOCKADES AND
RABI-TYPE OSCILLATIONS

Here we briefly describe the evolution of the systems de-
scribed by models 1 and 2 for some initial Fock states assuming
no dissipation. These evolutions lead to time-dependent PB

FIG. 7. (Color online) Model 2 with two-photon dissipation:
Same as in Fig. 6, but for the steady-state solutions ρ̂13

ss of the
master equation (26) with the Hamiltonian Ĥ13, given by Eq. (17)
for k = 1,l = 3.

(or nonstationary PB), which can also be interpreted as an
optical-state truncation.

Assuming that the driving field strength ε is much weaker
than the Kerr nonlinearity χ , one can find that the pure-state
evolution of the system, described by the Hamiltonian Ĥ02

(model 1), from the initial Fock states |0〉 and |2〉, can be
approximately given as follows:

∣∣ψ (0)
02 (t)

〉 ≈ cos(
√

2εt) |0〉 − i sin(
√

2εt) |2〉,
(22)∣∣ψ (2)

02 (t)
〉 ≈ −i sin(

√
2εt) |0〉 + cos(

√
2εt) |2〉,

respectively. These solutions are in a very good agreement with
the precise numerical solutions plotted in Figs. 1(a) and 1(c).
In the derivation of Eq. (22), we have ignored the contribution
of (ε/χ )2. The solution |ψ (0)

02 (t)〉 can be referred to as a three-
dimensional squeezed vacuum [49] or qutrit squeezed vacuum.

The solutions in Eq. (22) can be interpreted as Rabi-type
oscillations between the states |0〉 and |2〉 in an artificial
two-level system dynamically truncated (or generated) from
the infinite-dimensional anharmonic system described by
the Hamiltonian Ĥ02 for ε � χ . Thus, this phenomenon
corresponds to a two-photon blockade, where the excitation
of more than two photons is prohibited [57]. The evolutions
shown in Figs. 1(b) and 1(d) are practically negligible. This
photon blockade can be physically understood via the energy
spectrum and resonances shown in Fig. 2. Note that our model,
which leads to two-photon blockade induced by two-photon
driving, differs from that in Ref. [57], where a single-photon
driving was assumed. We also mention that the state |2〉 in the
solution |ψ (0)

13 (t)〉 is not populated, which is in contrast to the
dissipative evolution analyzed in the next section (see Table I
for comparison).
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FIG. 8. (Color online) Model 1 with two-photon dissipation: The
photon-number probabilities pn = 〈n| ρ̂02

ss |n〉 and the fidelity F =
p0 + p2 of the photon blockade versus the driving field strength ε, in
units of the damping constant γ , assuming the initial state to have an
even number of photons and γ /χ = 1/150. The analogous figure for
an initial odd-number state is omitted since p1 ≈ 1 [see Fig. 6(d)], at
least, for ε/γ ∈ [0,10]. For brevity, analogous plots for model 2 are
not presented here either.

The dissipation-free system, given by the Hamiltonian Ĥ13

(model 2), evolves from the initial Fock states |m〉 (for m =
0,1,3,4) as follows:∣∣ψ (0)

13 (t)
〉 ≈ cos

(
1
5εt

) |0〉 − i sin
(

1
5εt

) |4〉,∣∣ψ (1)
13 (t)

〉 ≈ cos(
√

6εt) |1〉 − i sin(
√

6εt) |3〉,
(23)∣∣ψ (3)

13 (t)
〉 ≈ −i sin(

√
6εt) |1〉 + cos(

√
6εt) |3〉,∣∣ψ (4)

13 (t)
〉 ≈ −i sin

(
1
5εt

) |0〉 + cos
(

1
5εt

) |4〉,
respectively. These are relatively good approximations of our
precise numerical solutions plotted in Figs. 3(a), 3(b), and 3(d).
In the derivations of these approximate solutions for |ψ (n)

13 (t)〉,
the same as for |ψ (n)

02 (t)〉, the contribution of (ε/χ )2 was
omitted.

We interpret the solutions in Eqs. (23) analogously to
those in Eqs. (22), i.e., as generalized two-photon (four-
photon) blockades and Rabi-type oscillations between the
states |1〉 and |3〉 (|0〉 and |4〉) in an artificial two-level system
dynamically truncated from the infinite-dimensional system
of the Hamiltonian Ĥ13 if ε � χ . The contributions of other
Fock states are practically negligible, as seen in Figs. 3. These
phenomena can be easily understood by analyzing the energy
spectra and resonances shown in Fig. 4.

For a comparison, we also recall the well-known ap-
proximate solutions for the pure-state evolutions, under the
interaction described by the Hamiltonian Ĥusual [48]:∣∣ψ (0)

usual(t)
〉 ≈ cos(εt) |0〉 − i sin(εt) |1〉,

(24)∣∣ψ (1)
usual(t)

〉 ≈ −i sin(εt) |0〉 + cos(εt) |1〉,

assuming the initial vacuum and single-photon states, respec-
tively. These solutions can be interpreted as single-photon
blockade in the dissipation-free regime and two-dimensional
(or qubit) coherent states [68].

IV. STEADY-STATE PHOTON BLOCKADES VIA
TWO-PHOTON DISSIPATION

Here we explain in detail the occurrence of various kinds
of steady-state engineered PB effects, when the systems
described by the Hamiltonians Ĥ02 and Ĥ13 are affected by
two-photon loss mechanisms, as schematically shown in Fig. 5.

A. Master equation describing two-photon absorption

We assume that the system (s), described by the Hamil-
tonian Ĥkl , is coupled to an engineered reservoir (r) via
two-photon processes (see, e.g., Refs. [2–15]) as described
by Ĥ = Ĥs + Ĥr + Ĥsr, where

Ĥsr = �gsr[â
2�̂† + (â†)2�̂], (25)

and Ĥr can be given, depending on the physical realization,
by, e.g., �

∑
n ωnσ̂

(n)
z or �

∑
n ωnâ

†
nân, while the collective

reservoir annihilation operator �̂ is given by
∑

n σ̂
(n)
− or∑

n ân, respectively. Moreover, gsr is the system-reservoir
coupling strength; ωn is the frequency of the nth mode
of the reservoir, σ̂ (n)

z and σ̂
(n)
− are the spin operators for

the nth qubit, defined analogously to those below Eq. (5),
and ân(â†

n) is the annihilation (creation) operator of the nth
mode of the reservoir. Thus, the evolution, under the Markov
approximation, of the reduced density matrix for the system
can be given by the following two-photon-absorption master
equation in the Lindblad form assuming zero temperature of
the reservoir [2,3,5,12],

dρ̂

dt
= Lρ̂ ≡ − i

�
[Ĥs,ρ̂] + γD[â2]ρ̂, (26)

where the superoperator D is defined by D[L̂]ρ̂ = L̂ρ̂L̂† −
1
2 (L̂†L̂ρ̂ + ρ̂L̂†L̂), and L is sometimes referred to as the
Liouvillian (or Lindbladian) superoperator. Moreover, γ =
γ2 is the two-photon damping constant (two-photon decay
rate).

It is worth noting that a single-mode squeezed state can
be generated by this two-photon absorption process via pure
dissipation [3]. This can be readily concluded by noting
that the Hamiltonian in Eq. (25) corresponds to a prototype
squeezing Hamiltonian in the parametric approximation, when
the collective reservoir operator �̂ is treated classically. Thus,
Eq. (26) can be considered a master equation obtained for
a squeezing-generating reservoir. Note that this equation is
completely different from the standard master equation for an
amplifier whose reservoir consists of squeezed white noise
(squeezed-vacuum reservoir) [69].

A more general form of the master equation can read [7]

dρ̂

dt
= L′ρ̂

= − i

�
[Ĥs,ρ̂] + γ⊥D[â†â]ρ̂ + γ1D[â]ρ̂ + γ2[â2]ρ̂, (27)
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FIG. 9. (Color online) Model 1 in panel (a) and model 2 in (b),
(c) with two-photon dissipation: The photon-number probabilities
pn and the fidelity F = ∑

n pn of the photon blockade versus the
tuning frequency �kl for the steady-state solutions ρ̂ss of the master
equation (26), for the Hamiltonian Ĥs(�kl,�kl) with fixed �kl =
0, assuming the initial state to have [(a), (b)] an even or (c) odd
number of photons. Here we set δ = ε/χ = 1/6 and δ′ = γ /ε =
1/25. The corresponding curves pn versus �02 for Ĥs(�02,�02 = 0)
and the initial state with odd number of photons are not presented here
because p1 ≈ 1 and p3 ≈ 0 in the whole studied interval, and this is
fully apparent from Fig. 6(d) as well. It is seen that even if �kl �= 0,
PB can still occur. Nevertheless, for an initial even (odd) number
state, the output steady state approaches the vacuum (single-photon)
state even for a relatively small �kl . Note that plots in panels (a) and
(c) look very similar but they correspond to different probabilities.

FIG. 10. (Color online) Model 1 with two-photon dissipation:
Same as in Fig. 6, but for different initial states: (a), (b) coherent
state |α = 3/4〉, with p0 ≈ p1 ≈ p2, (c), (d) coherent state |α = 2〉,
with p1 > p0 ≈ p2, and (e), (f) the cat state |α = 2,φ = π/4〉, with
p1 < p0 ≈ p2.

to include also single-photon absorption with its decay rate γ1,
and pure dephasing with its rate γ⊥, in addition to two-photon
absorption. Note that it is still assumed in this equation that
the reservoir is at zero temperature, so there is no transfer of
reservoir fluctuations into the system.

Our former studies [24,57] showed that the standard
realizations of photon blockade can be very sensitive to these
thermal fluctuations. Nevertheless, for simplicity, we apply
here the zero-temperature master equations, given by Eq. (26)
or, equivalently, by Eq. (27) assuming that

0 ≈ γ⊥ ≈ γ1 � γ2 � ε � χ. (28)

In order to visualize the steady-state solutions of the two-
photon-loss master equation, given by Eqs. (26), we plot
their Wigner functions and photon-number probabilities pn =
〈n|ρ̂ss|n〉 in Figs. 6–13. Moreover, Fig. 14 shows analogous
solutions of the single-photon-loss master equation, given in
Eq. (27), assuming that the single-photon decay rate γ1 is
dominantly larger than the two-photon decay rate γ2 and the
dephasing rate γ⊥.
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FIG. 11. (Color online) Model 2 with two-photon dissipation:
Same as in Fig. 10, but for the steady-state solutions ρ̂13

ss of the
master equation (26) with the Hamiltonian Ĥ13, given by Eq. (17).

B. Steady-state solutions of the master equation

Now we present our precise numerical and approximate
analytical steady-state solutions of the two-photon absorption
master equation, given by Eq. (26), to show explicitly how
photon blockade in the discussed engineered reservoir depends
on initial states.

FIG. 12. (Color online) Model 1 with two-photon dissipation:
Photon-number probabilities pn = 〈n| ρ̂02

ss |n〉 and ratio r versus mean
photon number 〈n〉 for different initial cavity fields: (a) chaotic state
ρ̂ch and (b) single-photon-added chaotic state ρ̂AT .

Steady-state solutions ρ̂ss can be obtained by solving the
master equation, given in Eqs. (26) and (27), with the condition
d
dt

ρ̂ss ≡ d
dt

ρ̂ = 0, by using, e.g., the inverse power method (as
implemented, e.g., in Ref. [70]), or by a direct integration,
for long enough evolution times: ρ̂ss = ρ̂(t → ∞). All our
numerical results, shown in Figs. 6–14, are based on these two
equivalent methods. We also applied an analytical approach of
finding approximate solutions of the master equation, given in
Eq. (26), as described below.

We assume that the ratio of the driving field strength
ε and the Kerr nonlinear coupling χ , and the ratio of χ

and the damping constant γ are small; i.e., δ = ε/χ � 1
and δ′ = γ /ε � 1. Thus, we can analyze the cavity-field
Hilbert space of a small dimension. For example, let us
truncate the Hilbert space at the five-photon Fock state,
which corresponds to analyzing a six-dimensional Hilbert
space. We have obtained numerically a very good agree-
ment between our numerical solutions in the six- and 100-
dimensional Hilbert spaces for the parameters chosen in all
figures.

In order to find compact-form analytical solutions, we
expanded our lengthy and complicated solutions (which are
not presented here) in power series of δ and δ′, and keeping
linear and quadratic terms only.

First, let us assume the initial state of our system is an
even-number state, i.e.,

ρ̂0,even =
∞∑

m=1

pm |ψm〉〈ψm| ,
(29)

|ψm〉 =
∞∑

n=0

c(m)
n |2n〉,

with arbitrary probabilities pm and complex amplitudes
c(m)
n , satisfying the normalization conditions

∑
m pm =∑

n |c(m)
n |2 = 1, for m = 1,2,... . Then we find the steady-state

solutions of the master equation, given by Eq. (26), for the
system described by the Hamiltonians Ĥ02 and Ĥ13, to be
given, in the standard Fock basis, by

ρ̂even
ss ≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p 0 a + ib 0 c + id 0

0 0 0 0 0 0

a − ib 0 q 0 e + if 0

0 0 0 0 0 0

c − id 0 e − if 0 r 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

in terms of the coefficients given explicitly in Appendix A. By
further assuming that δ2 ≈ δ′2 ≈ δδ′ ≈ 0 then r ≈ c ≈ d ≈
f = 0 for model 1 [see Eqs. (A1) and (A2)]. Thus, it is seen
that the steady state, which can be generated in this model,
assuming that the cavity field is initially in an even-number
state, is a partially incoherent superposition of effectively only
two number states, |0〉 and |2〉, while for model 2, the steady
state is spanned by the number states |0〉, |2〉, and |4〉. See
Table I for comparison.
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FIG. 13. (Color online) Model 1 with two-photon dissipation:
The figure shows how the steady state ρ̂02

ss in the engi-
neered photon blockade depends on initial cavity field |ψ0〉.
The photon-number probabilities pn = 〈n| ρ̂02

ss |n〉 (for n = 0,1,2)
and the ratio r = podd(|ψ0〉)/peven(ψ0〉) versus real amplitude
α for various initial states |ψ0〉: (a) coherent state |α〉 or,
equivalently, the Yurke-Stoler cat state |αYS 〉 = |α,φ = π/2〉,
(b) the cat state |α,φ = π/4〉, and (c) the ideal squeezed state
|α,ξ = 1/2〉, and [(d)–(f)] the displaced number states |α,n0〉 with
n0 = 1,2,3. The steady-state solutions ρ̂02

ss of the master equation (26)
for the Hamiltonian Ĥ02 are obtained assuming δ = ε/χ = 1/6 and
δ′ = γ /ε = 1/25.

Now we assume that the initial state of our system is an
odd-number state, i.e.,

ρ̂0,odd =
∞∑

m=1

pm |ψm〉〈ψm| , |ψm〉 =
∞∑

n=0

c(m)
n |2n + 1〉, (31)

for any pm and c(m)
n , as in Eq. (29). Then the steady-state

solution for Ĥ02 and Ĥ13 can be approximately given by

ρ̂odd
ss ≈ p|1〉〈1| + (1 − p)|3〉〈3| + [(a + ib)|1〉〈3| + H.c.],

(32)

where the coefficients a, b, and p are given explicitly in
Appendix A. It is seen that the steady state is spanned by
the number states |1〉 and |3〉 only. Actually, by also ignoring
the terms proportional to δ2, δ′2, and δδ′, the steady state for
model 1 is just the single-photon state, which is not the case
for model 2 (see also Table I for comparison).

As an illustration of these results, the Wigner functions
and photon-number probabilities for the numerically cal-

FIG. 14. (Color online) Models 3 in panels (a), (b) and 5 in
(c), (d) with single-photon dissipation for any initial states: Wigner
functions W (β) and photon-number probabilities pn for the steady-
state solutions of the master equation (27) with γ2 = γ⊥ = 0 for [(a),
(b)] the single-photon driven Hamiltonian Ĥusual, given by Eq. (20),
and [(c), (d)] the two-photon driven Hamiltonian Ĥ01, given by
Eq. (17) with k = 0,l = 1. We set δ = ε/χ = 1/6 and γ1/ε = 1/25.
Model 3 corresponds to the standard description of photon blockade.
It is worth noting that the same solutions, as shown in panels (a), (b),
can be obtained for the two-photon absorption master equation, given
by Eq. (26) with δ′ = γ /ε = 1/25. This case is referred to as model
3′ in Table I.

culated steady-state solutions ρ̂even
ss and ρ̂odd

ss are shown in
Figs. 6 and 7. On the scale of these plots, there is practically
no difference between our approximate analytical and precise
numerical solutions. Figure 8 shows how the steady-state
number probabilities pn depend on the driving field strength ε

in units of the damping constant γ for an initial even-number
state. Analogous solutions for an initial odd-number state
practically do not depend on ε/γ ∈ [0,10]. Figure 9 shows
how the probabilities pn depend on the tuning frequencies �02

(assuming �02 = 0) and �13 (with �13 = 0).
We find that the steady-state solution of the master equation,

given by Eq. (26) assuming γ � ε � χ , reads

ρ̂ss(ρ̂0) = peven(ρ̂0)ρ̂even
ss + podd(ρ̂0)ρ̂odd

ss , (33)

for an arbitrary initial state ρ0. This solution is a weighted sum
of the steady-state solutions, given by Eqs. (30) and (32), with
the weights

peven(ρ̂0) =
∞∑

n=0

〈2n|ρ̂0|2n〉, (34)

podd(ρ̂0) =
∞∑

n=0

〈2n + 1|ρ̂0|2n + 1〉. (35)
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So, it holds peven(ρ̂0) + podd(ρ̂0) = 1. It is seen that

ρ̂even
ss ≡ ρ̂ss

(∑
n

cn|2n〉
)

= ρ̂ss(|0〉), (36)

ρ̂odd
ss ≡ ρ̂ss

(∑
n

cn|2n + 1〉
)

= ρ̂ss(|1〉), (37)

for any complex amplitudes cn.
Our result that

ρ̂ss(|0〉) �= ρ̂ss(|1〉) (38)

sounds counterintuitive for the following reason: To find the so-
lution of the master equation, given by Eq. (26), one can write
separately the equations of motion for all the elements ρij (t)
of the density matrix ρ̂(t). The steady-state solutions ρ̄ss

ij =
limt→∞ ρij (t) can be obtained by setting ∂ρ̄ss

ij /∂t = 0. Then,
it would appear that the elements ρ̄ss

ij in the steady state do
not depend on the initial conditions. We will show below that
they can depend on the initial states of mixed parity. Namely,
let us create two matrices ρ̂ ′ and ρ̂ ′′ with the only nonzero
elements ρ ′

2i,2j = ρ̄ss
2i,2j and ρ ′′

2i+1,2j+1 = ρ̄ss
2i+1,2j+1 for i,j =

0,1,.... Then, the even steady-state density matrix, given by
Eq. (36), simply reads as ρ̂ss

even = ρ̂ ′/tr (ρ̂ ′). Analogously, the
odd steady-state density matrix, given by Eq. (37), is equal to
ρ̂ss

odd = ρ̂ ′′/tr (ρ̂ ′′). The general solution, given in Eq. (33), is
then state-dependent, although in this limited manner.

These formulas can be confirmed numerically by compar-
ing them with the solutions for the master equation obtained
for sufficiently long evolution times. Moreover, the steady-
state density matrix elements ρ̄ss

ij can be directly calculated
numerically by finding a vector in the null space of the
Liouvillian superoperator L [70].

We note that the ratio

r = podd(ρ̂0)

peven(ρ̂0)
= podd(ρ̂ss)

peven(ρ̂ss)
(39)

is preserved during the system evolution. This is because the
two-photon driving and two-photon dissipation, together with

the photon-number-preserving Kerr interaction, do not mix
even and odd number states. To show how this engineered
photon blockade depends on the initial states ρ̂0, the ratio r

is plotted in Figs. 10–13 for a few states ρ̂0 discussed in the
next section.

Finally, we note that these steady-state solutions, as well
as our precise numerical solutions shown in all plots, depend
solely on the ratios δ = ε/χ and δ′ = γ /ε, and do not depend
on the absolute values of ε, χ , and γ .

V. PHOTON BLOCKADE FOR SPECIFIC INITIAL FIELDS

Here we analyze how the engineered photon blockade
depends on some typical classical and nonclassical initial states
of the cavity field.

For a coherent state (CS) |α〉, we have

peven(|α〉) = 1
2 [1 + exp(−2|α|2)],

(40)
podd(|α〉) = 1

2 [1 − exp(−2|α|2)],

so their ratio is r = tanh(|α|2). In the limiting cases, one
observes that

lim
〈n〉→0

peven(ρ̂0) = 1, lim
〈n〉→0

podd(ρ̂0) = 0, (41)

lim
〈n〉→∞

peven(ρ̂0) = lim
〈n〉→∞

podd(ρ̂0) = 1
2 , (42)

where ρ̂0 = |α〉〈α| and the intensity is given by 〈n〉 = |α|2. A
few illustrative examples of phase-space and photon-number
distributions for the steady-state solutions, for initial coherent
states, are shown in Fig. 10 for model 1 and in Fig. 11 for
model 2.

For the chaotic (or thermal) state of the cavity field,

ρ̂ch = (1 − q)
∞∑

n=0

qn|n〉〈n|, (43)

TABLE I. Comparison of various kinds of photon blockades assuming m driving photons and d dissipating photons (due to absorption),
with d,m = 1,2. In particular, it is seen that the steady states of these photon blockades can depend on the initial states only for d = m > 1.
Our illustrations of the steady states include their Wigner functions and photon-number probabilities. Note that standard PB [27] is usually
studied in model 3.

Kerr m-photon d-photon populated state
Model Hamiltonian Eq. nonlinearity driving dissipation initial state Fock statesa dependence examples

1 Ĥ02 (14) n̂(n̂ − 2) m = 2 d = 2 even-number state |0〉, |2〉 no Figs. 6(a), 6(b)
odd-number state |1〉 no Figs. 6(c), 6(d)
mixed-parity stateb |0〉, |1〉, |2〉 yes Fig. 10

2 Ĥ13 (17) (n̂ − 1)(n̂ − 3) 2 2 even-number state |0〉, |2〉, |4〉 no Figs. 7(a), 7(b)
odd-number state |1〉, |3〉 no Figs. 7(c), 7(d)
mixed-parity stateb |0〉, |1〉, |2〉, |3〉, |4〉 yes Fig. 11

3 Ĥusual (20) n̂(n̂ − 1) 1 1 any |0〉, |1〉 no Figs. 14(a), 14(b)
3′ Ĥusual (20) n̂(n̂ − 1) 1 2 any |0〉, |1〉 no Figs. 14(a), 14(b)
4 Ĥ ′

usual (21) n̂(n̂ − 2) 1 1 any |0〉, |1〉, |2〉 no Ref. [57]
5 H01 (17) n̂(n̂ − 1) 2 1 any |0〉 no Figs. 14(c), 14(d)

aThe steady states generated via PB are partially incoherent superpositions of these Fock number states.
bThis can be a superposition or mixture of the even- and odd-number Fock states.
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where 〈n〉 = q/(1 − q) is the mean photon number, one can
find that

peven(ρ̂ch) = 1

1 + q
= 1 + 〈n〉

1 + 2〈n〉 ,
(44)

podd(ρ̂ch) = q

1 + q
= 〈n〉

1 + 2〈n〉 ,

so r(ρ̂ch) = q = 〈n〉/(〈n〉 + 1). In the limiting cases of the
intensity 〈n〉, one can see that the relations Eqs. (41) and (42)
hold also for ρ̂0 = ρ̂ch, as for coherent states. Figure 12(a)
shows how the photon-number probabilities pn of the steady-
state solutions ρ̂ss(ρ̂0) depend on the mean photon number 〈n〉
of the initial chaotic state ρ̂0 = ρ̂ch.

Now we analyze a few examples of nonclassical initial
states. The single-photon-added chaotic state, introduced by
Agarwal and Tara [71], can be defined as follows:

ρ̂AT = N â†ρ̂châ = N
∞∑

n=1

nqn|n〉〈n|, (45)

where ρ̂ch is the chaotic state, given by Eq. (43), â (â†) is
the annihilation (creation) operator of the field, and N =
(1 − q)2/q is the normalization constant. The mean photon
number for ρ̂AT is 〈n〉 = (1 + q)/(1 − q). It is interesting
to note that this infinite-dimensional state is nonclassical
although diagonal in the photon-number basis. We find that

peven(ρ̂AT ) = 2q

(1 + q)2
= 1

2
(1 − 〈n〉−2),

(46)

podd(ρ̂AT ) = 1 + q2

(1 + q)2
= 1

2
(1 + 〈n〉−2),

so r(ρ̂AT ) = (1 + q2)/(2q) = (1 + 〈n〉2)/(1 − 〈n〉2). In the
limit of large number of photons, 〈n〉 → ∞, again the relation,
given by Eq. (42), hold as for chaotic states. However, in the
limit of small number of photons, we have

lim
〈n〉→1

peven(ρ̂AT ) = 0, lim
〈n〉→1

podd(ρ̂AT ) = 1, (47)

which is the opposite case to the chaotic state, as given by
Eq. (41). Note that 〈n〉 � 1, because only then podd(ρ̂AT ) � 1.
Figure 12(b) shows how the photon-number probabilities
pn = 〈n| ρ̂ss(ρ̂0) |n〉 depend on the mean photon number 〈n〉
of the initial single-photon-added chaotic state ρ̂0 = ρ̂AT. This
dependence is fundamentally different from that shown in
Fig. 12(a) for the initial chaotic state.

Let us also analyze a prototype of Schrödinger’s cat states
given as a macroscopically distinct superposition of two
coherent states, e.g.,

|α,φ〉 = N [|α〉 + exp(iφ)| − α〉] (48)

with the normalization N = {2[1 + cos φ exp(−2|α|2)]}−1/2

assuming a complex amplitude α. One can find that

peven(|α,φ〉) = cos2

(
φ

2

)
1 + exp(−2|α|2)

1 + cos φ exp(−2|α|2)
,

podd(|α,φ〉) = sin2

(
φ

2

)
1 − exp(−2|α|2)

1 + cos φ exp(−2|α|2)
, (49)

r = tan2(φ/2) tanh |α|2.

For special choices of φ = 0,π/2,π , the state |α,φ〉 reduces
to the renowned cat states. These include the even CS

|α+〉 ≡ |α,φ = 0〉 = 1√
cosh |α|2

∞∑
n=0

α2n

√
(2n)!

|2n〉, (50)

the Yurke-Stoler cat state |αYS〉 ≡ |α,φ = π/2〉 [72], and the
odd CS

|α−〉 ≡ |α,φ = π〉 = 1√
sinh |α|2

∞∑
n=0

α2n+1

√
(2n + 1)!

|2n + 1〉.
(51)

Clearly, peven(|α+〉) = 1 and podd(|α−〉) = 1 for any α; this is
in contrast to the states |α,φ〉 for other angles φ. Equation (49)
for the Yurke-Stoler cat state |αYS〉 implies that

peven(|αYS〉) = peven(|α〉). (52)

Thus, the formulas given by Eqs. (40)–(42) hold for the state
|αYS〉 too. A few examples of the Wigner functions and photon-
number probabilities for the steady-state solutions, obtained
for initial cat states, are shown in Figs. 10(e), 10(f), 13(a),
and 13(b) for model 1, and in Figs. 11(e) and 11(f) for model 2.

In Fig. 13, we also analyze the engineered photon blockade
for squeezed and displaced-number initial states. The ideal
squeezed states (also known as the two-photon coherent states)
are defined as

|α,ξ 〉 = D̂(α)Ŝ(ξ )|0〉, (53)

which are given in terms of the squeeze operator Ŝ(ξ ) =
exp[ 1

2ξ ∗a2 − 1
2ξ (a†)2], where ξ is the complex squeezing

parameter, and the displacement operator D̂(α) = exp(αâ† −
α∗â) with a complex amplitude α. The displaced-number states
are defined by

|α,n0〉 = D̂(α)|n0〉, (54)

which become a coherent state |α〉 in a special case of
n0 = 0. The photon-number expansions of these are given in
Appendix B. These are useful to find the steady-state solutions,
given by Eq. (33). Except for some special cases, including
squeezed vacuum |α = 0,ξ 〉 and coherent state |α,n0 = 0〉, the
formulas for the probabilities peven and podd are not compact;
thus we present only our numerical results in Fig. 13.

VI. CONCLUSIONS

We studied photon blockade (also known as optical-state
truncation) of an optical or microwave light in a Kerr nonlinear
cavity parametrically driven by a two-photon process. The Kerr
nonlinear cavity can be effectively implemented by a standard
linear cavity with a tunable two-level system within the
Jaynes-Cummings model in the dispersive limit. We have also
assumed that the nonlinear system interacts with a nonlinear
reservoir, where two-photon absorption is dominant. We have
shown in Sec. II how to observe various types of photon
blockade effects (as summarized in Table I) by properly tuning
the frequencies of the driving field and the two-level system.
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Our approach is partially motivated by the observation
that two-photon loss mechanisms often accompany a Kerr
nonlinearity [11]. Moreover, quantum reservoirs are a powerful
resource for quantum state engineering (see, e.g., Refs. [3–
5,7–13,16–23,53,73,74]). In particular, the circuit described
in Ref. [16] for the implementation of nondemolition mea-
surement using the Kerr effect seems to be readily applicable
not only for generating Schrödinger cat states [7], but also
for implementing our generalized photon blockade via two-
photon dissipation. Anyway, such an implementation would
require a detailed analysis, which is not presented here.

The conditions to observe photon blockade are the follow-
ing: (i) the system must exhibit nonlinearity which is much
stronger than the strength of the drive, and (ii) dissipation is
weaker than the drive. (Actually, the second condition can
be relaxed, as seen in Fig. 8.) Thus, in particular, photon
blockade can also be observed even without damping at all.
The system evolution is limited to a few number states, which
are determined by the choice of initial states and the values of
the tuning parameters k,l in the Hamiltonian Hkl . This effect
is referred to as nonstationary (or time-dependent) photon
blockade. As discussed in Sec. III and shown in Figs. 1
and 3, Rabi-type oscillations can occur between some number
states, while practically no evolution can be observed for
other states. If the system is damped, then these Rabi-type
oscillations decrease in amplitude, and completely disappear
for longer times, as shown in Fig. 15 both for models 1 and
2. The evolutions of these driven and dissipative nonlinear
systems generate nonclassical optically truncated steady states
corresponding to stationary (or steady-state) photon blockade.
The phase-space and photon-number distributions of these
states are shown in Figs. 6–14.

It is well known that a typical steady-state photon blockade
does not depend on the initial state of a Kerr nonlinear system
if it is driven by a single-photon process and coupled to a
standard reservoir, where only a single-photon absorption is
allowed, as illustrated in Figs. 14(a) and 14(b) and listed in
Table I.

In contrast, we have shown that the engineered photon
blockade can depend on the system initial state (see Table I
for comparison of various photon blockade effects). This state
dependence occurs in a Kerr nonlinear system driven by a
two-photon process and dissipating via an engineered quantum
reservoir, where only two-photon absorption is allowed. These
two-photon driving and dissipation processes result in two
completely independent evolutions of the superpositions of
Fock states with either even or odd numbers of photons.
This can be interpreted as two different evolution-dissipation
channels for even and odd-number states. So, in particular,
these states evolve into two different steady states in the time
limit. As the two processes affect only every second state in the
Fock basis and there is no mixing between the photon numbers
of different parity, we can describe their evolutions in two
independent Hilbert spaces. If the initial state is a superposition
of photon-number states of different parity, then its steady state
is a weighted sum of the steady states achieved independently
in the even- and odd-number Hilbert spaces. The weights in
this mixture depend on the photon-number statistics of the
initial states, although in a limited way, as they depend solely

FIG. 15. (Color online) Models 1 (a) and 2 [(b)–(d)]: Dissipative
evolutions of the photon-number probabilities pn(t) and the photon-
blockade fidelities F (t) = ∑

n pn(t) for several initial Fock states
|m〉 (as indicated in the panel titles) assuming δ = ε/χ = 1/6, δ′ =
γ /ε = 1/25, and ε = 5. The decay of Rabi-type oscillations is clearly
seen. Panels (a) and (b), (c), (d) should be compared with Figs. 1(a)
and 2(a), 2(b), 2(c) demonstrating the corresponding dissipation-free
evolutions in models 1 and 2, respectively. It is seen that the decaying
states rapidly approach the steady states shown in Figs. 6 and 7.

033831-13



ADAM MIRANOWICZ et al. PHYSICAL REVIEW A 90, 033831 (2014)

on the ratio of the probabilities of measuring the odd and even
numbers of initial-state photons.

The above results imply that photon blockade phenomena
do not depend on the initial states for various other models
listed in Table I— for example, if a two-photon driving is
combined with a single-photon dissipation or, vice versa,
if a single-photon driving is accompanied by a two-photon
dissipation. This is because one of these processes (i.e., the
driving or dissipation) mixes the evolutions of the Hilbert
spaces with even and odd photon numbers.

To confirm these predictions we found approximate ana-
lytical steady-state solutions, given in Eqs. (30)–(33), of the
master equation, given by Eq. (26). We also obtained precise
numerical solutions in a 100-dimensional Hilbert space, as
shown in all our plots. We found a very good agreement
between these numerical and approximate analytical solutions.
Moreover, we observed that they depend solely on the ratios
between the driving field strength ε, the Kerr nonlinear
coupling χ , and the damping constant γ ; i.e., δ = ε/χ and
δ′ = γ /ε. So, the absolute values of ε, χ , and γ are irrelevant.

We analyzed a few examples of standard infinite-
dimensional quantum optical states including coherent,
squeezed, displaced number, chaotic, photon-added chaotic,
and Schrödinger’s cat states to show how the photon-number
statistics of an initial state influences its steady state. As
an illustration of our results, the Wigner functions and
photon-number probabilities for the steady states are shown in
Figs. 6–14. We note that some of these states have nonnegative
Wigner functions (i.e., without regions marked in blue).
Nevertheless all them are nonclassical; i.e., their Glauber-
Sudarshan P function is negative in some regions of phase
space.

We hope that our proposal of state-dependent photon
blockade via a two-photon absorbing reservoir is another
convincing example demonstrating how to harness quantum-
reservoir engineering for quantum technology.
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University under Project No. IGA-PřF-2014-014. Y.X.L. is
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APPENDIX A: APPROXIMATE STEADY-STATE
SOLUTIONS

Here we give approximate formulas for the coefficients
a,b,...,r occurring in the steady-state solutions, given by
Eqs. (30) and (32), as obtained by expanding our precise but
lengthy solutions (thus, not presented here) in power series of
δ = ε/χ � 1 and δ′ = γ /ε � 1 and keeping terms only up
to δ2, δ′2, and δδ′.

The coefficients in Eq. (30), where the initial state was as-
sumed to have an even number of photons, for the Hamiltonian
Ĥ02 (model 1) are given by

p = 1
2 − 9

32δ2 + 1
8δ′2, q = 1 − p − r, r = 3

32δ2, (A1)

for the diagonal terms of ρ̂even
ss , and

a = − 3
8

√
2δ, b = 1

4

√
2δ′, c = 5

64

√
6δ2,

(A2)
d = − 1

16

√
6δδ′, e = − 1

8

√
3δ, f = 0,

for its off-diagonal terms, while the coefficients for the
Hamiltonian Ĥ13 (model 2) are found to be

p = 25
32 − 107

512δ2, q = 3
16 + 15

128δ2, s = 5
768δ2, (A3)

and r = 1 − p − q − s, for the diagonal terms, and

a = 19
128

√
2δ, b = 3

32

√
2δ,

c = − 37
4608

√
6δ2, d = 1

16

√
6 − 49

768

√
6δ2, (A4)

e = − 5
64

√
3δ, f = 1

32

√
3δ,

for the off-diagonal terms. For simplicity, we set δ = δ′ in
Eqs. (A3) and (A4).

The coefficients in Eq. (32), where the initial state was as-
sumed to have an odd number of photons, for the Hamiltonian
Ĥ02 (model 1) read

p = 1 − 6ε2

M
≈ 1 − 3

8
δ2 ≈ 1,

a = −4
√

6
χε

M
≈ −

√
6

4
δ, (A5)

b = 3
√

6
εγ

M
≈ 3

16

√
6δδ′ ≈ 0,

where M = 16χ2 + 12ε2 + 9γ 2, while these coefficients for
the Hamiltonian Ĥ13 (model 2) are given by

p = 1 − 2ε2

M
≈ 1

2
, a = 0, b =

√
6
εγ

M
≈

√
6

4
δ′, (A6)

where M = 4ε2 + 3γ 2.

APPENDIX B: SOME PHOTON-NUMBER EXPANSIONS

Here we give some formulas useful for the calculation of
the probabilities peven(ρ̂0) and podd(ρ̂0), and their ratio r for the
squeezed and displaced-number states ρ̂0, shown in Fig. 13.

The photon-number expansion of the ideal squeezed states,
defined by Eq. (53), is given by

|α,ξ 〉 =
∑

n

〈n|α,ξ 〉|n〉 ≡
∑

n

cn|n〉, (B1)
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where

cn =
(

x

2

)n/2
Hn(y) exp(−z/2)√

n! cosh(|ξ |) ,

in terms of the Hermite polynomials Hn(y), x =
tanh(|ξ |) exp(iArgξ ),y = (2x)−1/2(α + α∗x), and z = |α|2 +
(α∗)2x.

The photon-number expansion of the displaced number
states, defined by Eq. (54), is given by [75,76]

|α,n0〉 =
∑

n

bn exp[i(n − n0) Argα]|n〉, (B2)

where the real amplitudes bn are

bn = 〈n|D̂(|α|)|n0〉

= C

√
n−!

n+!
(−1)n+−n|α|n+−n−L(n+−n−)

n− (|α|2), (B3)

where L(m)
n (x) are the associated Laguerre polynomials, C =

exp(− 1
2 |α|2), n− = min{n,n0}, and n+ = max{n,n0} = n +

n0 − n−.
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(1999).

[30] R. J. Brecha, P. R. Rice, and M. Xiao, Phys. Rev. A 59, 2392
(1999).
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J. Vučković, Nat. Phys. 4, 859 (2008).
[43] A. Majumdar, M. Bajcsy, and J. Vučković, Phys. Rev. A 85,
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